Our Top Choice Compound:(4-Methoxyphenyl)methanol

Welcome to talk about 105-13-5, If you have any questions, you can contact Mehrjoyan, F; Afshari, M or send Email.. Formula: C8H10O2

Formula: C8H10O2. In 2021 J MOL STRUCT published article about NICKEL FERRITE NANOPARTICLES; AEROBIC OXIDATION; MAGNETIC NANOPARTICLES; MECHANISM; ALDEHYDES; EFFICIENT; LIGAND in [Mehrjoyan, Forouzan] Islamic Azad Univ, Dept Chem, Ahvaz Branch, Ahvaz, Iran; [Afshari, Mozhgan] Islamic Azad Univ, Dept Chem, Shoushtar Branch, Shoushtar 6451741117, Iran in 2021, Cited 34. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

A new magnetically recoverable catalyst consisting of phenanthroline Cu(II) complex supported on nickel ferrite nanoparticles was prepared. The synthesized catalyst was characterized by Fourier transform in-frared spectroscopy, X-ray diffraction, transmission and scanning electron microscopes, thermogravimetry, energy dispersive X-ray spectroscopy, vibrating sample magnetometry and inductively coupled plasma. Supported copper complex used for solvent free oxidation of 1-phenyl ethanol as a model. Influence of the reaction parameters (kind of oxidant, amount of the catalyst, reaction time, solvent and reaction temperature) were studied. Because of the immobilized complex has been shown to be an efficient het-erogeneous catalyst for the selective oxidation of 1-phenyl ethanol to acetophenone (94% yield) by hydro-gen peroxide so this green approach extended to other benzylic alcohols. The catalyst had been reused 10 times with no significant loss of catalytic activity. SEM, EDX, XRD, and ICP analysis of reused catalyst indicated that the catalyst was stable after the reaction. (c) 2021 Published by Elsevier B.V.

Welcome to talk about 105-13-5, If you have any questions, you can contact Mehrjoyan, F; Afshari, M or send Email.. Formula: C8H10O2

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Something interesting about (4-Methoxyphenyl)methanol

Application In Synthesis of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Padmanaban, S; Lee, Y; Yoon, S or send Email.

An article Chemoselective hydrogenation of alpha,beta-unsaturated carbonyl compounds using a recyclable Ru catalyst embedded on a bisphosphine based POP WOS:000609243700011 published article about MESOPOROUS MOLECULAR-SIEVE; METAL-SUPPORT INTERACTION; SELECTIVE HYDROGENATION; UNSATURATED ALDEHYDES; CINNAMYL ALCOHOL; ACTIVATED CARBON; HIGHLY EFFICIENT; CINNAMALDEHYDE; RUTHENIUM; COMPLEXES in [Padmanaban, Sudakar; Yoon, Sungho] Chung Ang Univ, Dept Chem, 84 Heukseok Ro, Seoul 06974, South Korea; [Padmanaban, Sudakar; Lee, Yunho] Seoul Natl Univ, Dept Chem, Seoul 08826, South Korea in 2021, Cited 77. Application In Synthesis of (4-Methoxyphenyl)methanol. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Selective hydrogenation of the carbonyl functional group of alpha,beta-unsaturated carbonyl compounds affords industrially important allylic alcohols. However, achieving the selective reduction of the carbonyl group in the presence of the activated olefinic group is challenging. Therefore, the development of a highly chemoselective, efficient, and recyclable catalyst for this transformation is greatly desirable from the industrial and environmental viewpoints. In this study, a Ru-immobilized bisphosphine-based porous organic polymer (Ru@PP-POP) was used as an efficient heterogeneous catalyst for chemoselective hydrogenation of cinnamaldehyde (CAL) to cinnamyl alcohol with high chemoselectivity (98%) and excellent recyclability. To the best of our knowledge, the catalyst, Ru@PP-POP showed a high turnover number (970) and a high turnover frequency (240h(1)) which is the best activity obtained using a phosphine based heterogeneous Ru-catalyst in this transformation. (C) 2020 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.

Application In Synthesis of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Padmanaban, S; Lee, Y; Yoon, S or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

How did you first get involved in researching 105-13-5

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Quality Control of (4-Methoxyphenyl)methanol

Quality Control of (4-Methoxyphenyl)methanol. In 2021 ORG LETT published article about REDUCTION; GAS; SF6; BENZOPHENONE; POTENTIALS; ENERGIES; ION in [Kim, Sungjin; Khomutnyk, Yaroslav; Bannykh, Anton; Nagorny, Pavel] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA in 2021, Cited 42. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

This study describes a new convenient method for the photocatalytic generation of glycosyl fluorides using sulfur(VI) hexafluoride as an inexpensive and safe fluorinating agent and 4,4′-dimethoxybenzophenone as a readily available organic photocatalyst. This mild method was employed to generate 16 different glycosyl fluorides, including the substrates with acid and base labile functionalities, in yields of 43%-97%, and it was applied in continuous flow to accomplish fluorination on an 7.7 g scale and 93% yield.

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Quality Control of (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Final Thoughts on Chemistry for 105-13-5

Welcome to talk about 105-13-5, If you have any questions, you can contact Sait, N; Aliouane, N; Toukal, L; Hammache, H; Al-Noaimi, M; Helesbeux, JJ; Duval, O or send Email.. Category: alcohols-buliding-blocks

Category: alcohols-buliding-blocks. Authors Sait, N; Aliouane, N; Toukal, L; Hammache, H; Al-Noaimi, M; Helesbeux, JJ; Duval, O in ELSEVIER published article about in [Sait, N.; Aliouane, N.; Hammache, H.] Univ Bejaia, Dept Genie Proc, Lab Electrochim Corros & Valorisat Energet, Bejaia 06000, Algeria; [Toukal, L.] Univ Ferhat Abbas Setif 1, Dept Genie Proc, Lab Electrochim Ingn Mol & Catalyse Redox, Setif, Algeria; [Al-Noaimi, M.] Hashemite Univ, Fac Sci, Dept Chem, POB 330127, Zarqa 13133, Jordan; [Helesbeux, J. J.; Duval, O.] Univ Angers, Univ Bretagne Loire, SFR QUASAV 4207, Lab SONAS,EA921, 42 Rue Georges Morel, Beaucouze, France in 2021, Cited 83. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

The inhibition performance of the newly synthesized Ethylene bis [(2-hydroxy-5,1,3-phenylene) bismethylene] tetraphosphonic acid (ETPA) toward carbon steel in 3% NaCl was investigated at different concentrations using potentiodynamic polarization (PDP) and impedance spectroscopy (EIS) methods. It was found that the inhibition capability was increased with increasing inhibitor dose and reach 92% at 10(-3) mol/L. Also, Polarization curves showed that ETPA acts as a mixed type inhibitor with predominantly control of anodic reaction. The new inhibitor was investigated by different spectroscopic methods such as H-1, C-13 and (PNMR)-P-31. The quantum parameters such as absolute electronegativity (chi), energy gap Delta(E) (E-HOMO-E-LUMO), global softness (sigma), global hardness (eta), electrophilicity index (omega) and the number of transfer electrons (Delta N) are calculated by density functional theory (DFT). The experimental also correlated with density functional theory results. The calculations show that ETPA has high density of negative charge located on the oxygen atoms of the phosphonate group facilitating the adsorption of ETPA on the surface of carbon steel. The inhibition efficiency of ETPA was discussed in terms of blocking of electrode surface by adsorption of ETPA molecules through active centers. The adsorption of ETPA on the surface of carbon steel obeyed the Langmuir isotherm paradigm. (C) 2021 Elsevier B.V. All rights reserved.

Welcome to talk about 105-13-5, If you have any questions, you can contact Sait, N; Aliouane, N; Toukal, L; Hammache, H; Al-Noaimi, M; Helesbeux, JJ; Duval, O or send Email.. Category: alcohols-buliding-blocks

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Machine Learning in Chemistry about C8H10O2

Application In Synthesis of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Bisht, NS; Mehta, SPS; Sahoo, NG; Dandapat, A or send Email.

Application In Synthesis of (4-Methoxyphenyl)methanol. Authors Bisht, NS; Mehta, SPS; Sahoo, NG; Dandapat, A in ROYAL SOC CHEMISTRY published article about in [Bisht, Narendra Singh; Mehta, S. P. S.; Sahoo, Nanda Gopal; Dandapat, Anirban] Kumaun Univ, Dept Chem, DSB Campus, Naini Tal, Uttarakhand, India in 2021, Cited 74. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

The room temperature synthesis of an all-solid-state Z-scheme CuO-doped BiOBr (CuO-Bi-BiOBr) photocatalyst has been described. These CuO-Bi-BiOBr ternary heterojunctions exhibit efficient photocatalytic activities for selective alcohol oxidation. The structures, morphologies, and compositions of the nanostructures were well characterized using field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and atomic absorption spectroscopy (AAS). The X-ray diffraction (XRD) pattern of the as-synthesized nanostructures confirms the formation of phase-segregated CuO and BiOBr nanocrystals, whereas X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM) analyses clearly indicate the formation of metallic bismuth nanoparticles (NPs). Next, the developed CuO-Bi-BiOBr ternary heterojunctions were applied as an efficient photocatalyst for the oxidation of alcohols into their corresponding aldehydes/ketones with high selectivity (>99%) and high conversion ratios (>99%). Herein, Bi metal NPs act as an electron mediator and bridge the connectivity between the two semiconductors, BiOBr and CuO, and, thus, a Z-scheme heterojunction is established. As expected, CuO-Bi-BiOBr has shown significantly superior activities compared to those of pure BiOBr. A possible mechanism for the photocatalytic oxidation process has been proposed. Radical scavenging experiments suggest that the active species, h(+), OH, e(-), and O-2(-), are dominant in the alcohol oxidation process. The as-synthesized CuO-Bi-BiOBr was reused several times without any significant deterioration in the original activities and it thus possesses relatively high stability for practical applications.

Application In Synthesis of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Bisht, NS; Mehta, SPS; Sahoo, NG; Dandapat, A or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What advice would you give a new faculty member or graduate student interested in a career (4-Methoxyphenyl)methanol

Recommanded Product: (4-Methoxyphenyl)methanol. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

In 2021 SCI REP-UK published article about MANNOSE-BINDING LECTIN; IMMUNE COMPONENT FICOLIN-3; ALL-CAUSE MORTALITY; VASCULAR COMPLICATIONS; COMPLEMENT; ASSOCIATION; MICROALBUMINURIA; POPULATION; DEFICIENCY; SEVERITY in [Ostergaard, Jakob Appel] Aarhus Univ Hosp, Dept Endocrinol & Internal Med, Aarhus, Denmark; [Ostergaard, Jakob Appel; Hansen, Troels Krarup] Aarhus Univ Hosp, Steno Diabet Ctr Aarhus, Aarhus, Denmark; [Sigfrids, Fanny Jansson; Forsblom, Carol; Dahlstrom, Emma H.; Thorn, Lena M.; Harjutsalo, Valma; Groop, Per-Henrik] Folkhalsan Res Ctr, Folkhalsan Inst Genet, Helsinki, Finland; [Sigfrids, Fanny Jansson; Forsblom, Carol; Dahlstrom, Emma H.; Thorn, Lena M.; Harjutsalo, Valma; Groop, Per-Henrik] Univ Helsinki, Nephrol, Abdominal Ctr, Helsinki, Finland; [Sigfrids, Fanny Jansson; Forsblom, Carol; Dahlstrom, Emma H.; Thorn, Lena M.; Harjutsalo, Valma; Groop, Per-Henrik] Helsinki Univ Hosp, Helsinki, Finland; [Sigfrids, Fanny Jansson; Forsblom, Carol; Dahlstrom, Emma H.; Thorn, Lena M.; Harjutsalo, Valma; Groop, Per-Henrik] Univ Helsinki, Res Program Clin & Mol Metab, Fac Med, Helsinki, Finland; [Thorn, Lena M.] Univ Helsinki, Dept Gen Practice & Primary Hlth Care, Helsinki, Finland; [Harjutsalo, Valma] Natl Inst Hlth & Welf, Helsinki, Finland; [Flyvbjerg, Allan] Capital Reg Denmark, Steno Diabet Ctr Copenhagen, Copenhagen, Denmark; [Thiel, Steffen] Aarhus Univ, Dept Biomed, Aarhus, Denmark; [Groop, Per-Henrik] Monash Univ, Cent Clin Sch, Dept Diabet, Melbourne, Vic, Australia in 2021, Cited 39. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Recommanded Product: (4-Methoxyphenyl)methanol

H-ficolin recognizes patterns on microorganisms and stressed cells and can activate the lectin pathway of the complement system. We aimed to assess H-ficolin in relation to the progression of diabetic kidney disease (DKD), all-cause mortality, diabetes-related mortality, and cardiovascular events. Event rates per 10-unit H-ficolin-increase were compared in an observational follow-up of 2,410 individuals with type 1 diabetes from the FinnDiane Study. DKD progression occurred in 400 individuals. The unadjusted hazard ratio (HR) for progression was 1.29 (1.18-1.40) and 1.16 (1.05-1.29) after adjustment for diabetes duration, sex, HbA(1c), systolic blood pressure, and smoking status. After adding triglycerides to the model, the HR decreased to 1.07 (0.97-1.18). In all, 486 individuals died, including 268 deaths of cardiovascular causes and 192 deaths of complications to diabetes. HRs for all-cause mortality and cardiovascular mortality were 1.13 (1.04-1.22) and 1.05 (0.93-1.17), respectively, in unadjusted analyses. These estimates lost statistical significance in adjusted models. However, the unadjusted HR for diabetes-related mortality was 1.19 (1.05-1.35) and 1.18 (1.02-1.37) with the most stringent adjustment level. Our results, therefore, indicate that H-ficolin predicts diabetes-related mortality, but neither all-cause mortality nor fatal/non-fatal cardiovascular events. Furthermore, H-ficolin is associated with DKD progression, however, not independently of the fully adjusted model.

Recommanded Product: (4-Methoxyphenyl)methanol. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Search for chemical structures by a sketch :(4-Methoxyphenyl)methanol

Welcome to talk about 105-13-5, If you have any questions, you can contact Nkamba, DM; Wembodinga, G; Bernard, P; Ditekemena, J; Robert, A or send Email.. Safety of (4-Methoxyphenyl)methanol

Safety of (4-Methoxyphenyl)methanol. Authors Nkamba, DM; Wembodinga, G; Bernard, P; Ditekemena, J; Robert, A in BMC published article about in [Nkamba, Dalau Mukadi; Wembodinga, Gilbert; Ditekemena, John] Univ Kinshasa, Fac Med, Kinshasa Sch Publ Hlth, Kinshasa, DEM REP CONGO; [Nkamba, Dalau Mukadi; Robert, Annie] Univ Catholique Louvain UCLouvain, Inst Rech Expt & Clin IREC, Pole Epidemiol & Biostat, Clos Chapelle Aux Champs 30,Bte B1-30-13, B-1200 Brussels, Belgium; [Bernard, Pierre] Univ Catholique Louvain UCLouvain, Inst Rech Expt & Clin IREC, Pole Gynecol & Obstet, Brussels, Belgium in 2021, Cited 23. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

BackgroundPoor awareness of obstetric danger signs is a major contributing factor to delays in seeking obstetric care and hence to high maternal mortality and morbidity worldwide. We conducted the current study to assess the level of agreement on receipt of counseling on obstetric danger signs between direct observations of antenatal care (ANC) consultation and women’s recall in the exit interview. We also identified factors associated with pregnant women’s awareness of obstetric danger signs during pregnancy in the Democratic Republic of Congo (DRC)MethodsWe used data from the 2017-2018 DRC Service Provision Assessment survey. Agreement between the observation and woman’s recall was measured using Cohen’s kappa statistic and percent agreement. Multivariable Zero-Inflated Poisson (ZIP) regression was used to identify factors associated with the number of danger signs during pregnancy the woman knew.ResultsOn average, women were aware of 1.51.34 danger signs in pregnancy (range: 0 to 8). Agreement between observation and woman’s recall was 70.7%, with a positive agreement of 16.9% at the country level but ranging from 2.1% in Bandundu to 39.7% in Sud Kivu. Using multivariable ZIP analysis, the number of obstetric danger signs the women mentioned was significantly higher in multigravida women (Adj.IRR=1.38; 95% CI: 1.23-1.55), in women attending a private facility (Adj.IRR=1.15; 95% CI: 1.01-1.31), in women attending a subsequent ANC visit (Adj.IRR=1.11; 95% CI: 1.01-1.21), and in women counseled on danger signs during the ANC visit (Adj.IRR=1.19; 95% CI: 1.05-1.35). There was a regional variation in the awareness of danger signs, with the least mentioned signs in the middle and the most in the eastern provinces.ConclusionsOur findings indicated poor agreement between directly observed counseling and women’s reports that counseling on obstetric danger signs occurred during the current ANC visit. We found that province of residence, provision of counseling on obstetric danger signs, facility ownership, gravidity and the number of ANC visits were predictors of the awareness of obstetric danger signs among pregnant women. These factors should be considered when developing strategies aim at improving women’s awareness about obstetric danger signs in the DRC

Welcome to talk about 105-13-5, If you have any questions, you can contact Nkamba, DM; Wembodinga, G; Bernard, P; Ditekemena, J; Robert, A or send Email.. Safety of (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Chemical Properties and Facts of 105-13-5

Welcome to talk about 105-13-5, If you have any questions, you can contact Kalita, T; Dev, D; Mondal, S; Giri, RS; Mandal, B or send Email.. SDS of cas: 105-13-5

SDS of cas: 105-13-5. Kalita, T; Dev, D; Mondal, S; Giri, RS; Mandal, B in [Kalita, Tapasi; Dev, Dharm; Mondal, Sandip; Giri, Rajat Subhra; Mandal, Bhubaneswar] Indian Inst Technol Guwahati, Dept Chem, Gauhati 781039, Assam, India published Ethyl-2-Cyano-2-(2-Nitrophenylsulfonyloximino)Acetate (ortho-NosylOXY) Mediated One-Pot Racemization Free Synthesis of Ureas, Carbamates, and Thiocarbamates via Curtius Rearrangement in 2021, Cited 39. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

Direct conversion of carboxylic acids to ureas, carbamates, and thiocarbamates in a single pot via Curtius rearrangement is accomplished. One recently established coupling reagent, Ethyl-2-cyano-2-(2-nitrophenylsulfonyloximino)acetate (ortho-NosylOXY, I), is successfully used for the racemization free synthesis of ureas, di-peptidyl ureas, and carbamates with moderate to good yield (82-69%). This single-pot hassle-free procedure works with a diverse range of N-protecting groups Fmoc, Boc, and Cbz. Various amine, including aromatic, methyl esters of amino acids, t-butylamine, alcohols, and thiols, are used as nucleophiles. A detailed NMR-based mechanism study is incorporated here. Racemization suppression, easy removal of by-products, and less waste generation make this methodology useful.

Welcome to talk about 105-13-5, If you have any questions, you can contact Kalita, T; Dev, D; Mondal, S; Giri, RS; Mandal, B or send Email.. SDS of cas: 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Machine Learning in Chemistry about (4-Methoxyphenyl)methanol

Welcome to talk about 105-13-5, If you have any questions, you can contact Lu, XL; Qiu, YY; Yang, BC; He, HB; Gao, SH or send Email.. SDS of cas: 105-13-5

An article Asymmetric total synthesis of (+)-xestoquinone and (+)-adociaquinones A and B WOS:000637925000008 published article about DIELS-ALDER REACTION; HYDROXY-O-QUINODIMETHANES; PHOTOASSISTED SYNTHESIS; ABSOLUTE STEREOCHEMISTRY; NATURAL-PRODUCT; ANALOGS THEREOF; SILYL ETHERS; XESTOQUINONE; SPONGE; HALENAQUINONE in [Lu, Xiao-Long; Qiu, Yuanyou; Yang, Baochao; Gao, Shuanhu] East China Normal Univ, Sch Chem & Mol Engn, Shanghai Key Lab Green Chem & Chem Proc, 3663N Zhongshan Rog, Shanghai 200062, Peoples R China; [He, Haibing; Gao, Shuanhu] East China Normal Univ, Shanghai Engn Res Ctr Mol Therapeut & New Drug De, 3663N Zhongshan Rd, Shanghai 200062, Peoples R China in 2021, Cited 76. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. SDS of cas: 105-13-5

The asymmetric total synthesis of (+)-xestoquinone and (+)-adociaquinones A and B was achieved in 6-7 steps using an easily accessible meso-cyclohexadienone derivative. The [6,6]-bicyclic decalin B-C ring and the all-carbon quaternary stereocenter at C-6 were prepared via a desymmetric intramolecular Michael reaction with up to 97% ee. The naphthalene diol D-E ring was constructed through a sequence of Ti(Oi-Pr)(4)-promoted photoenolization/Diels-Alder, dehydration, and aromatization reactions. This asymmetric strategy provides a scalable route to prepare target molecules and their derivatives for further biological studies.

Welcome to talk about 105-13-5, If you have any questions, you can contact Lu, XL; Qiu, YY; Yang, BC; He, HB; Gao, SH or send Email.. SDS of cas: 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

More research is needed about (4-Methoxyphenyl)methanol

Welcome to talk about 105-13-5, If you have any questions, you can contact Wang, ML; Xu, ZK; Shi, Y; Cai, F; Qiu, JQ; Yang, G; Hua, Z; Chen, T or send Email.. Formula: C8H10O2

Recently I am researching about FREE AEROBIC OXIDATION; SUPPORTED TEMPO; ASYMMETRIC SULFOXIDATION; BLOCK-COPOLYMERS; CATALYST; METAL; EFFICIENT; DEHYDROGENATION; ALDEHYDES, Saw an article supported by the Zhejiang Provincial Key Research and Development Program [2021C01076]; Zhejiang Provincial Natural Science Foundation of ChinaNatural Science Foundation of Zhejiang Province [LY17B020013]; Fundamental Research Funds of Zhejiang Sci-Tech University [2019Q020]; Anhui Provinci a l Natura l Science FoundationNatural Science Foundation of Anhui Province [2008085QE249]; Anhui Provincial Innovation and Entrepreneurship Support Plan for Overseas Returnees [2019LCX023]. Published in AMER CHEMICAL SOC in WASHINGTON ,Authors: Wang, ML; Xu, ZK; Shi, Y; Cai, F; Qiu, JQ; Yang, G; Hua, Z; Chen, T. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol. Formula: C8H10O2

Polymeric nanoreactors in water fabricated by the self-assembly of amphiphilic copolymers have attracted much attention due to their good catalytic performance without using organic solvents. However, the disassembly and instability of relevant nanostructures often compromise their potential applicability. Herein, the preparation of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-containing nanoreactors by the self-assembly of amphiphilic bottle-brush copolymers has been demonstrated. First, a macromonomer having a norbornenyl polymerizable group was prepared by RAFT polymerization of hydrophobic and hydrophilic monomers. The macromonomer was further subjected to ring-opening metathesis polymerization to produce an amphiphilic bottlebrush copolymer. Further, TEMPO, as a catalyst, was introduced into the hydrophobic block through the activated ester strategy. Finally, TEMPO-functionalized polymeric nanoreactors were successfully obtained by self-assembly in water. The nanoreactors exhibited excellent catalytic activities in selective oxidation of alcohols in water. More importantly, the reaction kinetics showed that the turnover frequency is greatly increased compared to that of the similar nanoreactor prepared from liner copolymers under the same conditions. The outstanding catalytic activities of the nanoreactors from bottlebrush copolymers could be attributed to the more stable micellar structure using the substrate concentration effect. This work presents a new strategy to fabricate stable nanoreactors, paving the way for highly efficient organic reactions in aqueous solutions.

Welcome to talk about 105-13-5, If you have any questions, you can contact Wang, ML; Xu, ZK; Shi, Y; Cai, F; Qiu, JQ; Yang, G; Hua, Z; Chen, T or send Email.. Formula: C8H10O2

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts