Discover the magic of the C8H10O2

Quality Control of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wu, SP; Zhang, H; Cao, QE; Zhao, QH; Fang, WH or concate me.

Quality Control of (4-Methoxyphenyl)methanol. Authors Wu, SP; Zhang, H; Cao, QE; Zhao, QH; Fang, WH in ROYAL SOC CHEMISTRY published article about in [Wu, Shipeng; Zhang, Hao; Cao, Qiue; Zhao, Qihua; Fang, Wenhao] Yunnan Univ, Sch Chem Sci & Technol, Key Lab Med Chem Nat Resource, Minist Educ,Funct Mol Anal & Biotransformat Key L, 2 North Cuihu Rd, Kunming 650091, Yunnan, Peoples R China; [Cao, Qiue; Fang, Wenhao] Yunnan Univ, Natl Demonstrat Ctr Expt Chem & Chem Engn Educ, Kunming 650091, Yunnan, Peoples R China in 2021, Cited 46. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Direct oxidative coupling of alcohols with amines using a non-precious metal oxide catalyst under mild conditions is highly desirable for imine synthesis. In this work, a mesoporous Mn1ZrxOy solid solution catalyst prepared by a co-precipitation method showed excellent catalytic performance in imine synthesis from primary alcohols and amines without base additives in an air atmosphere. XRD, N-2 physisorption, H-2-TPR, O-2-TPD, EPR and XPS were comprehensively used to unravel its structural, redox and amphoteric properties that closely depended on the interaction between MnOy and ZrO2 with a variable Zr ratio. The Mn1Zr0.5Oy catalyst presented the highest fractions of Mn3+ ions and reactive oxygen species on the surface, and the highest concentrations of acidic-basic sites, which were disclosed to play important roles in activating alcohols and molecular O-2 in the rate-determining step. In the model reaction of oxidative coupling of benzyl alcohol with aniline, such enhanced features of the Mn1Zr0.5Oy catalyst can promote the intrinsic catalytic activity (iTOF of 1.87 h(-1)) and boost benzylideneaniline formation (5.56 mmol g(cat).(-1) h(-1)) based on a >99% yield at 80 degrees C respectively at a fast response. It can also work effectively at a room temperature of 30 degrees C, as well as for the gram-grade synthesis. This is one of the best results among all the MnOy-based catalysts in the literature. Moreover, this catalyst showed good stability and a wide substrate scope with good to excellent yields of imines.

Quality Control of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wu, SP; Zhang, H; Cao, QE; Zhao, QH; Fang, WH or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Chemistry Milestones Of 105-13-5

HPLC of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Sung, K; Lee, MH; Cheong, YJ; Kim, YK; Yu, S; Jang, HY or concate me.

Authors Sung, K; Lee, MH; Cheong, YJ; Kim, YK; Yu, S; Jang, HY in WILEY-V C H VERLAG GMBH published article about in [Sung, Kihyuk; Lee, Mi-hyun; Cheong, Yeon-Joo; Kim, Yu Kwon; Yu, Sungju; Jang, Hye-Young] Ajou Univ, Dept Energy Syst Res, Suwon 16499, South Korea in 2021, Cited 56. HPLC of Formula: C8H10O2. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Multi N-heterocyclic carbene(NHC)-modified iridium catalysts were employed in the beta-alkylation of alcohols; dimerization of primary alcohols (Guerbet reaction), cross-coupling of secondary and primary alcohols, and intramolecular cyclization of alcohols. Mechanistic studies of Guerbet reaction, including kinetic experiments, mass analysis, and density functional theory (DFT) calculation, were employed to explain the fast reaction promoted by bimetallic catalysts, and the dramatic reactivity increase of monometallic catalysts at the late stage of the reaction.

HPLC of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Sung, K; Lee, MH; Cheong, YJ; Kim, YK; Yu, S; Jang, HY or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What kind of challenge would you like to see in a future of compound:105-13-5

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Yamamoto, Y; Ota, M; Kodama, S; Michimoto, K; Nomoto, A; Ogawa, A; Furuya, M; Kawakami, K or concate me.. Formula: C8H10O2

Authors Yamamoto, Y; Ota, M; Kodama, S; Michimoto, K; Nomoto, A; Ogawa, A; Furuya, M; Kawakami, K in AMER CHEMICAL SOC published article about in [Yamamoto, Yuki; Ota, Miyuto; Kodama, Shintaro; Michimoto, Kazuki; Nomoto, Akihiro; Ogawa, Akiya] Osaka Prefecture Univ, Grad Sch Engn, Dept Appl Chem, Sakai, Osaka 5998531, Japan; [Furuya, Mitsunori; Kawakami, Kiminori] Mitsubishi Chem Corp, Sci & Innovat Ctr, Yokohama, Kanagawa 2278502, Japan in 2021, Cited 67. Formula: C8H10O2. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

A green method for the oxidation of alcohols to carboxylic acids was developed using a novel co-catalytic system based on gold, silver, and copper catalysts. This reaction system was conducted under atmospheric oxygen in water and mild conditions to selectively oxidize 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid, as a building block for polyethylene furanoate, which is a 100% bio-based, future alternative to the petroleum-based polyethylene terephthalate. Furthermore, various primary alcohols were conveniently oxidized to their corresponding carboxylic acids in up to quantitative yields.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Yamamoto, Y; Ota, M; Kodama, S; Michimoto, K; Nomoto, A; Ogawa, A; Furuya, M; Kawakami, K or concate me.. Formula: C8H10O2

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What unique challenges do researchers face in C8H10O2

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Balaji, S; Balamurugan, G; Ramesh, R; Semeril, D or concate me.. Quality Control of (4-Methoxyphenyl)methanol

Balaji, S; Balamurugan, G; Ramesh, R; Semeril, D in [Balaji, Sundarraman; Balamurugan, Gunasekaran; Ramesh, Rengan] Bharathidasan Univ, Ctr Organometall Chem, Sch Chem, Tiruchirappalli 620024, Tamil Nadu, India; [Semeril, David] Univ Strasbourg, Inst Chim, Lab Chim Inorgan & Catalyse, UMR 7177,CNRS, F-67070 Strasbourg, France published Palladium(II) N boolean AND O Chelating Complexes Catalyzed One-Pot Approach for Synthesis of Quinazolin-4(3H)-ones via Acceptorless Dehydrogenative Coupling of Benzyl Alcohols and 2-Aminobenzamide in 2021, Cited 78. Quality Control of (4-Methoxyphenyl)methanol. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

A convenient protocol for the one-pot synthesis of quinazolin-4(3H)-ones using palladium(II) complexes via dehydrogenative coupling of readily available benzyl alcohols and 2-aminobenzamide has been described. New structurally related Pd(II) N boolean AND O chelating complexes of general configuration [Pd(L)Cl(PPh3)] (where L = dimethylamino benzoylhydrazone ligands) have been designed and synthesized. The formation of the complexes has been recognized by analytical and spectral methods (FT-IR, NMR, HR-MS). The presence of a square-planar geometry around the palladium(II) ion was confirmed by single crystal X-ray diffraction study. A wide range of substituted quinazolinones have been successfully achieved from a diverse range of benzyl alcohols in good to excellent yields using 1.0 mol % of catalyst loading under aerobic conditions. Furthermore, control experiments reveal that the dehydrogenative coupling reaction involves initially the formation of an aldehyde intermediate and subsequent formation of a cyclic aminal intermediate.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Balaji, S; Balamurugan, G; Ramesh, R; Semeril, D or concate me.. Quality Control of (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

The Shocking Revelation of 105-13-5

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wang, MM; Ma, YL; Lv, BL; Hua, FL; Meng, SY; Lei, XD; Wang, QT; Su, BT; Lei, ZQ; Yang, ZW or concate me.. Name: (4-Methoxyphenyl)methanol

Authors Wang, MM; Ma, YL; Lv, BL; Hua, FL; Meng, SY; Lei, XD; Wang, QT; Su, BT; Lei, ZQ; Yang, ZW in SPRINGER published article about METAL-ORGANIC FRAMEWORK; SELECTIVE OXIDATION; AROMATIC ALCOHOLS; HYDROGEN-PRODUCTION; REACTIVE DYE; NANOCOMPOSITE; EFFICIENT; MIL-101; NANOPARTICLES; PERFORMANCE in [Wang, Mingming; Ma, Yali; Lv, Bolin; Hua, Fenglin; Meng, Shuangyan; Lei, Xuedi; Wang, Qingtao; Su, Bitao; Lei, Ziqiang; Yang, Zhiwang] Northwest Normal Univ, Coll Chem & Chem Engn, Key Lab Polymer Mat Gansu Prov, Key Lab Ecofunct Polymer Mat,Minist Educ, Lanzhou 730070, Peoples R China in 2021, Cited 44. Name: (4-Methoxyphenyl)methanol. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

A novel photoactive porous material of GR/FeMIL-101 based on FeMIL-101 metal organic frameworks (MOFs) was successfully synthesized via a simple hydrothermal method. The structural and photoelectric properties of the GR/FeMIL-101 was analyzed by XRD, SEM, TEM, TGA, XPS, UV-vis DRS, FT-IR, PL and EIS methods. The photocatalytic performance for the selective oxidation of benzyl alcohol with GR/FeMIL-101 as catalysts was evaluated under visible light irradiation. The results showed that the GR/FeMIL-101 nanohybrid had better photocatalytic performance than both of FeMIL-101 and the pristine MIL-101. It was further found that the incorporation of Fe and MIL-101 caused valence fluctuations of Fe3+/Fe2+ which improved the absorption of visible-light and increased the separation efficiency of photogenerated charges. In addition, the combination of FeMIL-101 and GR could further promote the transfer rate of the photoelectrons. The mechanism of the reaction revealed that center dot O-2(-) was the dominating active specie in this reaction through active species trapping experiments. [GRAPHICS] .

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wang, MM; Ma, YL; Lv, BL; Hua, FL; Meng, SY; Lei, XD; Wang, QT; Su, BT; Lei, ZQ; Yang, ZW or concate me.. Name: (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Final Thoughts on Chemistry for C8H10O2

Application In Synthesis of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Das, S; Mondal, R; Chakraborty, G; Guin, AK; Das, A; Paul, ND or concate me.

Das, S; Mondal, R; Chakraborty, G; Guin, AK; Das, A; Paul, ND in [Das, Siuli; Mondal, Rakesh; Chakraborty, Gargi; Guin, Amit Kumar; Paul, Nanda D.] Indian Inst Engn Sci & Technol, Dept Chem, Howrah 711103, India; [Das, Abhishek] Indian Assoc Cultivat Sci, Sch Chem Sci, Kolkata 700032, India published Zinc Stabilized Azo-anion Radical in Dehydrogenative Synthesis of N-Heterocycles. An Exclusively Ligand Centered Redox Controlled Approach in 2021, Cited 79. Application In Synthesis of (4-Methoxyphenyl)methanol. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

Herein we report an exclusively ligand-centered redox controlled approach for the dehydrogenation of a variety of N-heterocycles using a Zn(II)-stabilized azo-anion radical complex as the catalyst. A simple, easy-to-prepare, and bench-stable Zn(II)-complex (1b) featuring the tridentate arylazo pincer, 2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline, in the presence of zinc-dust, undergoes reduction to form the azo-anion radical species [1b]which efficiently dehydrogenates various saturated N-heterocycles such as 1,2,3,4-tetrahydro-2-methylquinoline, 1,2,3,4-tetrahydro-isoquinoline, indoline, 2-phenyl-2,3-dihydro-1H-benzoimidazole, 2,3-dihydro-2-phenylquinazolin-4(1H)-one, and 1,2,3,4-tetrahydro-2-phenylquinazolines, among others, under air. The catalyst has further been found to be compatible with the cascade synthesis of these N-heterocycles via dehydrogenative coupling of alcohols with other suitable coupling partners under air. Mechanistic investigation reveals that the dehydrogenation reactions proceed via a one-electron hydrogen atom transfer (HAT) pathway where the zinc-stabilized azo-anion radical ligand abstracts the hydrogen atom from the organic substrate(s), and the whole catalytic cycle proceeds via the exclusive involvement of the ligand-centered redox events where the zinc acts only as the template.

Application In Synthesis of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Das, S; Mondal, R; Chakraborty, G; Guin, AK; Das, A; Paul, ND or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What advice would you give a new faculty member or graduate student interested in a career (4-Methoxyphenyl)methanol

Name: (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Bolen, SD; Love, TE; Einstadter, D; Lever, J; Lewis, S; Persaud, H; Fiegl, J; Liu, RJ; Ali-Matlock, W; Bar-Shain, D; Caron, A; Misak, J; Wagner, T; Kauffman, E; Cook, L; Hebert, C; White, S; Kobaivanova, N; Cebul, R or concate me.

Name: (4-Methoxyphenyl)methanol. Authors Bolen, SD; Love, TE; Einstadter, D; Lever, J; Lewis, S; Persaud, H; Fiegl, J; Liu, RJ; Ali-Matlock, W; Bar-Shain, D; Caron, A; Misak, J; Wagner, T; Kauffman, E; Cook, L; Hebert, C; White, S; Kobaivanova, N; Cebul, R in SPRINGER published article about in [Bolen, Shari D.; Love, Thomas E.; Einstadter, Douglas; Lewis, Steven; Bar-Shain, David; Caron, Aleece; Cebul, Randall] Case Western Reserve Univ, Populat Hlth Res Inst, Ctr Hlth Care Res & Policy, MetroHlth Syst, Cleveland, OH 44106 USA; [Bolen, Shari D.; Love, Thomas E.; Einstadter, Douglas; Lever, Jonathan; Ali-Matlock, Wanda; Bar-Shain, David; Cebul, Randall] Better Hlth Partnership, Cleveland, OH USA; [Bolen, Shari D.; Love, Thomas E.; Einstadter, Douglas; Lewis, Steven; Caron, Aleece] Case Western Reserve Univ, Dept Med, MetroHlth Syst, Cleveland, OH 44106 USA; [Bolen, Shari D.; Love, Thomas E.; Einstadter, Douglas; Persaud, Harry; Cebul, Randall] Case Western Reserve Univ, Dept Populat & Quantitat Hlth Sci, Cleveland, OH 44106 USA; [Fiegl, Jordan] Univ Hosp, Dept Data Sci & Analyt, Cleveland, OH USA; [Liu, Rujia] Medpace Inc, Cincinnati, OH USA; [Bar-Shain, David] Case Western Reserve Univ, Dept Pediat, Cleveland, OH 44106 USA; [Misak, James] Case Western Reserve Univ, Dept Family Med, MetroHlth Syst, Cleveland, OH 44106 USA; [Wagner, Todd] Signature Hlth, Mentor, OH USA; [Kauffman, Erick] Neighborhood Family Practice, Cleveland, OH USA; [Cook, Lloyd] Med Mutual, Cleveland, OH USA; [Hebert, Christopher] Mercy Hlth, Cincinnati, OH USA; [Kobaivanova, Nana] Cleveland Clin, Cleveland, OH USA in 2021, Cited 28. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

BACKGROUND: Accelerated translation of real-world interventions for hypertension management is critical to improving cardiovascular outcomes and reducing disparities. OBJECTIVE: To determine whether a positive deviance approach would improve blood pressure (BP) control across diverse health systems. DESIGN: Quality improvement study using 1-year cross sections of electronic health record data over 5 years (2013-2017). PARTICIPANTS: Adults >= 18 with hypertension with two visits in 2 years with at least one primary care visit in the last year (N = 114,950 at baseline) to a primary care practice in Better Health Partnership, a regional health improvement collaborative. INTERVENTIONS: Identification of a positive deviant and dissemination of this system’s best practices for control of hypertension (i.e., accurate/repeat BP measurement; timely follow-up; outreach; standard treatment algorithm; and communication curriculum) using 3 different intensities (low: Learning Collaborative events describing the best practices; moderate: Learning Collaborative events plus consultation when requested; and high: Learning Collaborative events plus practice coaching). MAIN MEASURES: We used a weighted linear model to estimate the pre- to post-intervention average change in BP control (< 140/90 mmHg) for 35 continuously participating clinics. KEY RESULTS: BP control post-intervention improved by 7.6% [95% confidence interval (CI) 6.0-9.1], from 67% in 2013 to 74% in 2017. Subgroups with the greatest absolute improvement in BP control included Medicaid (12.0%, CI 10.5-13.5), Hispanic (10.5%, 95% CI 8.4-12.5), and African American (9.0%, 95% CI 7.7-10.4). Implementation intensity was associated with improvement in BP control (high: 14.9%, 95% CI 0.2-19.5; moderate: 5.2%, 95% CI 0.8-9.5; low: 0.2%, 95% CI-3.9 to 4.3). CONCLUSIONS: Employing a positive deviance approach can accelerate translation of real-world best practices into care across diverse health systems in the context of a regional health improvement collaborative (RHIC). Using this approach within RHICs nationwide could translate to meaningful improvements in cardiovascular morbidity and mortality. Name: (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Bolen, SD; Love, TE; Einstadter, D; Lever, J; Lewis, S; Persaud, H; Fiegl, J; Liu, RJ; Ali-Matlock, W; Bar-Shain, D; Caron, A; Misak, J; Wagner, T; Kauffman, E; Cook, L; Hebert, C; White, S; Kobaivanova, N; Cebul, R or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Final Thoughts on Chemistry for (4-Methoxyphenyl)methanol

SDS of cas: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Karimi, M; Mohebali, H; Sadeghi, S; Safarifard, V; Mahjoub, A; Heydari, A or concate me.

SDS of cas: 105-13-5. In 2021 MICROPOR MESOPOR MAT published article about METAL-ORGANIC FRAMEWORKS; LIQUID-PHASE OXIDATION; SELECTIVE OXIDATION; HIGHLY EFFICIENT; DRUG-DELIVERY; TOLUENE; ULTRASOUND; PERFORMANCE; AMIDATION; ALCOHOLS in [Karimi, Meghdad; Mohebali, Haleh; Sadeghi, Samira; Mahjoub, Alireza; Heydari, Akbar] Tarbiat Modares Univ, Chem Dept, POB 14155-4838, Tehran, Iran; [Safarifard, Vahid] Iran Univ Sci & Technol, Dept Chem, Tehran 1684613114, Iran in 2021, Cited 76. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

Ce-UiO-66 MOF, namely cerium-organic framework was prepared through a fast and efficient method under ultrasonic radiation. After preparation, it was identified using some different microscopic and spectroscopic techniques such as PXRD, FT-IR, TG/DTA, BET, BJH, and FE-SEM. The catalytic activity of Ce-UiO-66 MOF was checked in aerobic oxidation of methyl arenas, alcohols and styrene derivatives in a sustainable circumstance with no additives. Moreover, its catalytic activity was surveyed influenced by a number of variables in the ultrasonic synthesis method. Some parameters such as solvent, base, temperature, amount of the catalyst and time were also tested to optimize the aerobic oxidation reaction. After the 10th run, the recycled Ce-MOF showed an acceptable efficiency, which proved its high reusability and stability under optimized conditions. Furthermore, the Ce-UiO-66 was investigated structurally by PXRD method which demonstrated the catalyst stability after the aerobic oxidation reaction.

SDS of cas: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Karimi, M; Mohebali, H; Sadeghi, S; Safarifard, V; Mahjoub, A; Heydari, A or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Chemical Properties and Facts of C8H10O2

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Karimi, M; Mohebali, H; Sadeghi, S; Safarifard, V; Mahjoub, A; Heydari, A or concate me.. SDS of cas: 105-13-5

SDS of cas: 105-13-5. In 2021 MICROPOR MESOPOR MAT published article about METAL-ORGANIC FRAMEWORKS; LIQUID-PHASE OXIDATION; SELECTIVE OXIDATION; HIGHLY EFFICIENT; DRUG-DELIVERY; TOLUENE; ULTRASOUND; PERFORMANCE; AMIDATION; ALCOHOLS in [Karimi, Meghdad; Mohebali, Haleh; Sadeghi, Samira; Mahjoub, Alireza; Heydari, Akbar] Tarbiat Modares Univ, Chem Dept, POB 14155-4838, Tehran, Iran; [Safarifard, Vahid] Iran Univ Sci & Technol, Dept Chem, Tehran 1684613114, Iran in 2021, Cited 76. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

Ce-UiO-66 MOF, namely cerium-organic framework was prepared through a fast and efficient method under ultrasonic radiation. After preparation, it was identified using some different microscopic and spectroscopic techniques such as PXRD, FT-IR, TG/DTA, BET, BJH, and FE-SEM. The catalytic activity of Ce-UiO-66 MOF was checked in aerobic oxidation of methyl arenas, alcohols and styrene derivatives in a sustainable circumstance with no additives. Moreover, its catalytic activity was surveyed influenced by a number of variables in the ultrasonic synthesis method. Some parameters such as solvent, base, temperature, amount of the catalyst and time were also tested to optimize the aerobic oxidation reaction. After the 10th run, the recycled Ce-MOF showed an acceptable efficiency, which proved its high reusability and stability under optimized conditions. Furthermore, the Ce-UiO-66 was investigated structurally by PXRD method which demonstrated the catalyst stability after the aerobic oxidation reaction.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Karimi, M; Mohebali, H; Sadeghi, S; Safarifard, V; Mahjoub, A; Heydari, A or concate me.. SDS of cas: 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

An overview of features, applications of compound:(4-Methoxyphenyl)methanol

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Taghavi, S; Amoozadeh, A; Nemati, F or concate me.. COA of Formula: C8H10O2

COA of Formula: C8H10O2. In 2021 J CHEM TECHNOL BIOT published article about AROMATIC ALCOHOLS; MULTICOMPONENT SYNTHESIS; TIO2 NANOPARTICLES; AEROBIC OXIDATION; TITANIUM-DIOXIDE; IONIC LIQUIDS; METAL-OXIDES; EFFICIENT; ALDEHYDES; DEGRADATION in [Taghavi, Shaghayegh; Amoozadeh, Ali; Nemati, Firouzeh] Semnan Univ, Fac Chem, Dept Organ Chem, Semnan 3513119111, Iran in 2021, Cited 76. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

BACKGROUND Deep eutectic solvents (DESs) are prepared by mixing solid organic precursors to form a liquid driven from strong hydrogen-bond interactions. The physical and chemical properties of these compounds have been widely investigated, and it has been shown that they are benign media for biotransformations, organicsynthesis, biodieselpreparation, and a sustainable media for nanoscale and functional materials. RESULTS This study is the first report on the synthesis of n-TiO2-P25@TDI@DES (urea: ZnCl2) with photo catalytic activity. This nano photocatalyst was obtained through covalent grafting of TiO2-P25 nanoparticles to an inexpensive and highly reactive linker (2,4-toluene diisocyanate). The presented nano photocatalyst has been employed as a covalently grafted Lewis acidic deep eutectic solvent to oxidize various primary benzyl alcohols to their corresponding carbonyl compounds by sodium nitrate as oxidant, under visible light exposure. CONCLUSION This highly efficient nanocatalyst was investigated by various characterization techniques including fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM with EDX), and elemental analysis. Owing to its enhanced catalytic activity, thermal stability, and environmentally friendly nature, the present method can be regarded as an attractive green chemistry approach. (c) 2020 Society of Chemical Industry (SCI)

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Taghavi, S; Amoozadeh, A; Nemati, F or concate me.. COA of Formula: C8H10O2

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts