Downstream Synthetic Route Of 105-13-5

Computed Properties of C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Yao, HY; Wang, YS; Razi, MK or concate me.

Computed Properties of C8H10O2. Authors Yao, HY; Wang, YS; Razi, MK in ROYAL SOC CHEMISTRY published article about in [Yao, Hongyan] Hebi Polytech, Deans Off, Hebi 458030, Peoples R China; [Wang, Yongsheng] Henan Polytech Univ, Sch Phys Sci Educ, Jiaozuo 454003, Henan, Peoples R China; [Razi, Maryam Kargar] Islamic Azad Univ, North Branch Tehran, Fac Chem, Tehran, Iran in 2021, Cited 82. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

In this study, a magnetic asymmetric Salamo-based Zn complex (H2L = salen type di-Schiff bases)-supported on the surface of modified Fe3O4 (Fe3O4@H2L-Zn) as a new catalyst was designed and characterized via numerous analytical techniques such as FT-IR spectroscopy, XRD, EDS, ICP-AES, SEM, TEM, TGA and VSM. An efficient and sustainable synthetic protocol has been presented for the synthesis of silyl ether substructures via the silyl protection of alcohols under mild conditions. The synthetic protocol involves a two-component solvent-free reaction between various hydroxyl-bearing substrates and hexamethyldisilazane (HMDS) as an inexpensive silylating agent using Fe3O4@H2L-Zn MNPs as a magnetically separable, recyclable and reusable heterogeneous catalyst. Fe3O4@H2L-Zn MNPs were also applied for the removal of silyl protecting groups from hydroxyl functions using water in CH2Cl2 under green conditions. The catalyst demonstrated good to excellent catalytic yield efficiency for both the reactions compared to the commercial metal-based catalysts under green conditions for a wide range of substrates.

Computed Properties of C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Yao, HY; Wang, YS; Razi, MK or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

New learning discoveries about (4-Methoxyphenyl)methanol

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Duong, U; Ansari, TN; Parmar, S; Sharma, S; Kozlowski, PM; Jasinski, JB; Plummer, S; Gallou, F; Handa, S or concate me.. Product Details of 105-13-5

Product Details of 105-13-5. Authors Duong, U; Ansari, TN; Parmar, S; Sharma, S; Kozlowski, PM; Jasinski, JB; Plummer, S; Gallou, F; Handa, S in AMER CHEMICAL SOC published article about in [Duong, Uyen; Ansari, Tharique N.; Parmar, Saurav; Sharma, Sudripet; Kozlowski, Pawel M.; Handa, Sachin] Univ Louisville, Dept Chem, Louisville, KY 40292 USA; [Jasinski, Jacek B.] Univ Louisville, Mat Characterizat, Conn Ctr Renewable Energy Res, Louisville, KY 40292 USA; [Plummer, Scott] Novartis Inst Biomed Res, Cambridge, MA 02139 USA; [Gallou, Fabrice] Novartis Pharma AG, CH-4056 Basel, Switzerland in 2021, Cited 34. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Upon visible-light irradiation, the heterogeneous polymer of PDI-Cu(I)-PDI (PDI = perylene diimide) generates charge transfer states that are subsequently quenched by molecular oxygen for their participation in redox activity. This insoluble polymeric Cu(I) is catalytically active for the oxidation of benzylic alcohols to corresponding aldehydes when suspended in dynamic micelles of PS-750-M. A broad substrate scope, excellent selectivity, and no over-oxidation reveal the catalyst robustness. The catalytic activity, control experiments, and time-dependent DFT calculations show the charge transfer states. The polymeric catalyst is entirely recyclable, as evidenced by the recycle studies using Scott’s recyclability test. The morphology, structure, copper’s oxidation state, and the catalyst’s thermal stability are determined by SEM, XPS, and TGA analysis.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Duong, U; Ansari, TN; Parmar, S; Sharma, S; Kozlowski, PM; Jasinski, JB; Plummer, S; Gallou, F; Handa, S or concate me.. Product Details of 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

More research is needed about (4-Methoxyphenyl)methanol

Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Li, DF; Wang, JG; Xu, FX; Zhang, NC; Men, Y or concate me.

An article Mesoporous (001)-TiO2 nanocrystals with tailored Ti3+ and surface oxygen vacancies for boosting photocatalytic selective conversion of aromatic alcohols WOS:000644065100024 published article about EXPOSED 001 FACETS; SOOT OXIDATION ACTIVITY; VISIBLE PHOTOCATALYST; DOPED TIO2; PERCENTAGE; NANOCOMPOSITES; PERFORMANCE; NANOSHEETS; CATALYSTS; CRYSTALS in [Li, Dianfeng; Wang, Jinguo; Xu, Fengxia; Zhang, Nianchen; Men, Yong] Shanghai Univ Engn Sci, Sch Chem & Chem Engn, Shanghai 201620, Peoples R China in 2021, Cited 46. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Formula: C8H10O2

Selective conversion of aromatic alcohols to value-added chemicals is becoming an emerging research hotspot in heterogeneous photocatalysis, but its critical challenge is how to construct highly efficient photocatalysts. Herein, mesoporous (001)-TiO2 nanocrystals with tailored Ti3+ and surface oxygen vacancies have been fabricated by a facile hydrothermal route, showing remarkably boosted photoactivity for selective conversion of aromatic alcohols to carbonyl compounds in water medium under visible-light irradiation. Results attest that the remarkably boosted photoactivity was mainly correlated with the strong synergetic effect of exposed (001) facets, Ti3+ self-doping, and surface oxygen vacancies, leading to the enhanced reactant (aromatic alcohols and O-2) activation via the high surface energy of (001) facets, the improved visible-light absorbance via the intrinsic band gap narrowing, and the escalated photoelectron-hole separation efficiency via Ti3+ and surface oxygen vacancies acting as electron sinks. Meanwhile, a plausible photocatalytic mechanism for selective conversion of aromatic alcohols to carbonyl compounds has been elucidated in detail based on active species identified by capture experiments. It is hoped that this work can deliver some new insights into the rational design of highly efficient photocatalysts applied in future green organic selective transformation reactions.

Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Li, DF; Wang, JG; Xu, FX; Zhang, NC; Men, Y or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Chemical Properties and Facts of (4-Methoxyphenyl)methanol

Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wang, ZH; Wang, H; Wang, H; Li, L; Zhou, MD or concate me.

Formula: C8H10O2. Authors Wang, ZH; Wang, H; Wang, H; Li, L; Zhou, MD in AMER CHEMICAL SOC published article about in [Wang, Zhao-Hui; Wang, He; Wang, Hua; Li, Lei; Zhou, Ming-Dong] Liaoning Shihua Univ, Sch Chem & Mat Sci, Fushun 113001, Peoples R China in 2021, Cited 63. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

In this work, ruthenium(II)-catalyzed C-C/C-N annulation of 2-arylquinazolinones with vinylene carbonate is reported to synthesize fused quinazolinones. This catalytic system tolerates a wide range of substrates with excellent functional-group compatibility. In this transformation, the vinylene carbonate acts as an ethynol surrogate without any external oxidant involved. Furthermore, preliminary mechanistic studies were conducted, and a plausible catalytic cycle was also proposed.

Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wang, ZH; Wang, H; Wang, H; Li, L; Zhou, MD or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

The Absolute Best Science Experiment for (4-Methoxyphenyl)methanol

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Padmanaban, S; Gunasekar, GH; Yoon, S or concate me.. Computed Properties of C8H10O2

Computed Properties of C8H10O2. In 2021 INORG CHEM published article about RUTHENIUM PINCER COMPLEX; POROUS ORGANIC POLYMER; SELECTIVE HYDROGENATION; HOMOGENEOUS HYDROGENATION; UNSATURATED ALDEHYDES; CYCLIC CARBONATES; ACTIVATED CARBON; SCALE SYNTHESIS; EFFICIENT; METHANOL in [Padmanaban, Sudakar; Yoon, Sungho] Chung Ang Univ, Dept Chem, Seoul 06974, South Korea; [Padmanaban, Sudakar] Seoul Natl Univ, Dept Chem, Seoul 08826, South Korea; [Gunasekar, Gunniya Hariyanandam] Korea Inst Sci & Technol, Clean Energy Res Ctr, Seoul 136791, South Korea in 2021, Cited 95. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

In this study, a commercially available homogeneous pincer-type complex, Ru-Macho, was directly heterogenized via the Lewis acid-catalyzed Friedel-Crafts reaction using dichloromethane as the cross-linker to obtain a heterogeneous, pincer-type Ru porous organometallic polymer (Ru-Macho-POMP) with a high surface area. Notably, Ru-Macho-POMP was demonstrated to be an efficient heterogeneous catalyst for the chemoselective hydrogenation of alpha,beta-unsaturated carbonyl compounds to their corresponding allylic alcohols using cinnamaldehyde as a model compound. The Ru-Macho-POMP catalyst showed a high turnover frequency (TOF = 920 h(-1)) and a high turnover number (TON = 2750), with high chemoselectivity (99%) and recyclability during the selective hydrogenation of alpha, beta-unsaturated carbonyl compounds.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Padmanaban, S; Gunasekar, GH; Yoon, S or concate me.. Computed Properties of C8H10O2

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Chemical Properties and Facts of C8H10O2

Category: alcohols-buliding-blocks. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wang, J; Gu, XM; Pei, LJ; Kong, P; Zhang, J; Wang, XY; Wang, RY; Waclawik, ER; Zheng, ZF or concate me.

An article Strong metal-support interaction induced O-2 activation over Au/MNb2O6 (M= Zn2+, Ni2+ and Co2+) for efficient photocatalytic benzyl alcohol oxidative esterification WOS:000600017200006 published article about SELECTIVE AEROBIC OXIDATION; GOLD NANOPARTICLES; ALIPHATIC-ALCOHOLS; ATMOSPHERIC-PRESSURE; OXYGEN ACTIVATION; MOLECULAR-OXYGEN; METHYL-ESTERS; CATALYSTS; REDUCTION; OXIDE in [Wang, Jie; Gu, Xianmo; Pei, Linjuan; Kong, Peng; Zhang, Jin; Wang, Xiaoyu; Wang, Ruiyi; Zheng, Zhanfeng] Chinese Acad Sci, Inst Coal Chem, State Key Lab Coal Convers, Taiyuan 030001, Peoples R China; [Wang, Jie; Pei, Linjuan; Zhang, Jin; Wang, Xiaoyu; Zheng, Zhanfeng] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China; [Waclawik, Eric R.] Queensland Univ Technol, Sch Chem Phys & Mech Engn, Brisbane, Qld 4001, Australia in 2021, Cited 61. Category: alcohols-buliding-blocks. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

A series of metal niobates (MNb2O6, M = Zn2+, Ni2+ and Co2+) were prepared from H-niobate precursor under hydrothermal conditions, in which amino groups of L-lysine play an important role. Au nanoparticles were then supported on these niobates by NaBH4 reduction method. More importantly, the strong interaction between Au nanoparticles and ZnNb2O6 generates negatively charged Au which can activate molecular oxygen to form the exclusive high-active peroxide (NbOOAu) species on Au/ZnNb2O6 surface under visible light irradiation, observed in situ by diffuse reflectance infrared Fourier transform spectra (DRIFTS). The optimal NbOOAu species produced on the surface of Au/ZnNb2O6 can remove the H atom of the methylene group (-CH2-) of benzyl alcohol, leading to high photocatalytic activity of Au/ZnNb2O6 compared with Au/NiNb2O6 and Au/CoNb2O6. This modulation of interaction of Au and niobates for the activation of molecular oxygen provides a new prospect for highly selective photocatalytic oxidation reactions.

Category: alcohols-buliding-blocks. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wang, J; Gu, XM; Pei, LJ; Kong, P; Zhang, J; Wang, XY; Wang, RY; Waclawik, ER; Zheng, ZF or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What Kind of Chemistry Facts Are We Going to Learn About C8H10O2

Quality Control of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Inatomi, S; Takayanagi, Y; Watanabe, K; Toita, A; Yamakoshi, H; Nakamura, S or concate me.

Quality Control of (4-Methoxyphenyl)methanol. Inatomi, S; Takayanagi, Y; Watanabe, K; Toita, A; Yamakoshi, H; Nakamura, S in [Inatomi, Saki; Takayanagi, Yuta; Watanabe, Kento; Toita, Akinori; Yamakoshi, Hiroyuki; Nakamura, Seiichi] Nagoya City Univ, Grad Sch Pharmaceut Sci, Mizuho Ku, 3-1 Tanabe Dori, Nagoya, Aichi 4678603, Japan published Stereoselective 1,4-Addition of Primary Alcohols to gamma-Alkoxy-alpha,beta-unsaturated Esters in 2021, Cited 26. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

The scope and limitations of the diastereoselective 1,4-addition reaction of primary alcohols to gamma-alkoxy-alpha,beta-unsaturated esters were investigated. We found that a variety of sodium alkoxides, generated from the corresponding primary alcohols with NaH, underwent 1,4-addition reactions with (E)-enoates in CH(2)Cl(2)at -23 degrees C to give beta-alkoxy esters in modest yields with good to excellentsyn-selectivity, whereas stereoselectivity was not observed with the use of glycerol derivatives as nucleophiles. Cyclic acetal protection was found to play a pivotal role for the reaction to proceed.

Quality Control of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Inatomi, S; Takayanagi, Y; Watanabe, K; Toita, A; Yamakoshi, H; Nakamura, S or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

A new application about(4-Methoxyphenyl)methanol

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kobayashi, M; Yamaguchi, H; Suzuki, T; Obora, Y or concate me.. Recommanded Product: 105-13-5

An article Cross beta-alkylation of primary alcohols catalysed by DMF-stabilized iridium nanoparticles WOS:000627441700007 published article about N,N-DIMETHYLFORMAMIDE-STABILIZED PALLADIUM NANOCLUSTERS; ALPHA-ALKYLATION; BORROWING HYDROGEN; GUERBET REACTION; N-BUTANOL; METHYLATION; KETONES; METHANOL; DIMETHYLFORMAMIDE; ALPHA,OMEGA-DIOLS in [Kobayashi, Masaki; Yamaguchi, Hiroki; Obora, Yasushi] Kansai Univ, Fac Chem Mat & Bioengn, Dept Chem & Mat Engn, Suita, Osaka 5648680, Japan; [Suzuki, Takeyuki] Osaka Univ, Comprehens Anal Ctr, Inst Sci & Ind Res ISIR, 8-1 Mihogaoka, Ibaraki, Osaka 5670057, Japan in 2021, Cited 64. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Recommanded Product: 105-13-5

A simple method for the cross beta-alkylation of linear alcohols with benzyl alcohols in the presence of DMF-stabilized iridium nanoparticles was developed. The nanoparticles were prepared in one-step and thoroughly characterized. Furthermore, the optimum reaction conditions have a wide substrate scope and excellent product selectivity.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kobayashi, M; Yamaguchi, H; Suzuki, T; Obora, Y or concate me.. Recommanded Product: 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Simple exploration of (4-Methoxyphenyl)methanol

SDS of cas: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wang, K; Chen, H; Dai, XY; Huang, XP; Feng, ZQ or concate me.

An article Palladium-catalyzed one-pot synthesis of 2-substituted quinazolin-4(3H)-ones from o-nitrobenzamide and alcohols WOS:000640769800011 published article about CASCADE SYNTHESIS; QUINAZOLINONES; SYSTEM; 4(3H)-QUINAZOLINONES; 2-NITROBENZAMIDES; AMINOBENZAMIDES; CYCLIZATION; CHEMISTRY; EFFICIENT; STRATEGY in [Wang, Ke; Chen, Hao; Dai, Xinyan; Huang, Xupeng; Feng, Zhiqiang] Chinese Acad Med Sci & Peking Union Med Coll, Inst Mat Med, Beijing Key Lab Act Subst Discovery & Drugabil Ev, 1 Xiannongtan St, Beijing 100050, Peoples R China in 2021, Cited 41. SDS of cas: 105-13-5. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Palladium-catalyzed 2-substituted quinazolin-4(3H)-one formation from readily available o-nitrobenzamides and alcohols using hydrogen transfer is described. Various quinazolin-4(3H)-ones were obtained in good to high yields. The cascade reaction including alcohol oxidation, nitro reduction, condensation, and dehydrogenation occurs without any added reducing or oxidizing agent.

SDS of cas: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wang, K; Chen, H; Dai, XY; Huang, XP; Feng, ZQ or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Chemical Properties and Facts of C8H10O2

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Ruiz-Castaneda, M; Santos, L; Manzano, BR; Espino, G; Jalon, FA or concate me.. Product Details of 105-13-5

Product Details of 105-13-5. Authors Ruiz-Castaneda, M; Santos, L; Manzano, BR; Espino, G; Jalon, FA in WILEY-V C H VERLAG GMBH published article about in [Ruiz-Castaneda, Margarita; Santos, Lucia; Manzano, Blanca R.; Jalon, Felix A.] Univ Castilla La Mancha, Fac Ciencias & Tecnol Quim IRICA, Avda CJ Cela 10, Ciudad Real 13071, Spain; [Espino, Gustavo] Univ Burgos, Fac Ciencias, Dept Quim, Plaza Misael Banuelos S-N, Burgos 09001, Spain in 2021, Cited 107. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Deuterium labeling is an interesting process that leads to compounds of use in different fields. We describe the transfer hydrogenation of aldehydes and the selective C-1 deuteration of the obtained alcohols in D2O, as the only deuterium source. Different aromatic, alkylic and alpha,beta-unsaturated aldehydes were reduced in the presence of [RuCl(p-cymene)(dmbpy)]BF4, (dmbpy=4,4 ‘-dimethyl-2,2 ‘-bipyridine) as the pre-catalyst and HCO2Na/HCO2H as the hydrogen source. Moreover, furfural and glucose, were selectively reduced to the valuable alcohols, furfuryl alcohol and sorbitol. The processes were carried out in neat water or in a biphasic water/toluene system. The biphasic system allowed easy recycling, higher yields, and higher selective D incorporation (using D2O/toluene). The deuteration took place due to an efficient effective M-H/D+ exchange from D2O that allows the inversion of polarity of D+ (umpolung). DFT calculations that explain the catalytic behavior in water are also included.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Ruiz-Castaneda, M; Santos, L; Manzano, BR; Espino, G; Jalon, FA or concate me.. Product Details of 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts