Liu, Zhu’s team published research in Chemical Science in 2021 | CAS: 111-87-5

Chemical Science published new progress about Algorithm. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, Recommanded Product: n-Octanol.

Liu, Zhu published the artcileAn octanol hinge opens the door to water transport, Recommanded Product: n-Octanol, the main research area is octanol water transport phase boundary.

Despite their prevalent use as a surrogate for partitioning of pharmacol. active solutes across lipid membranes, the mechanism of transport across water/octanol phase boundaries has remained unexplored. Using mol. dynamics, graph theor., cluster anal., and Langevin dynamics, we reveal an elegant mechanism for the simplest solute, water. Self-assembled octanol at the interface reversibly binds water and swings like the hinge of a door to bring water into a semi-organized second interfacial layer (a “”bilayer island””). This mechanism is distinct from well-known lipid flipping and water transport processes in protein-free membranes, highlighting important limitations in the water/octanol proxy. Interestingly, the collective and reversible behavior is well-described by a double well potential energy function, with the two stable states being the water bound to the hinge on either side of the interface. The function of the hinge for transport, coupled with the underlying double well energy landscape, is akin to a mol. switch or shuttle that functions under equilibrium and is driven by the differential free energies of solvation of H2O across the interface. This example successfully operates within the dynamic motion of instantaneous surface fluctuations, a feature that expands upon traditional approaches toward controlled solute transport that act to avoid or circumvent the dynamic nature of the interface.

Chemical Science published new progress about Algorithm. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, Recommanded Product: n-Octanol.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Chang, Chaoyi’s team published research in Journal of Chemical Physics in 2020-07-28 | CAS: 584-02-1

Journal of Chemical Physics published new progress about Algorithm. 584-02-1 belongs to class alcohols-buliding-blocks, name is 3-Pentanol, and the molecular formula is C5H12O, Quality Control of 584-02-1.

Chang, Chaoyi published the artcileClassification of biomass reactions and predictions of reaction energies through machine learning, Quality Control of 584-02-1, the main research area is methanol propionic acid gas phase reaction energy.

Elementary steps and intermediate species of linearly structured biomass compounds are studied. Specifically, possible intermediates and elementary reactions of 15 key biomass compounds and 33 small mols. are obtained from a recursive bond-breaking algorithm. These are used as inputs to the unsupervised Mol2Vec algorithm to generate vector representations of all intermediates and elementary reactions. The vector descriptors are used to identify sub-classes of elementary steps, and linear discriminant anal. is used to accurately identify the reaction type and reduce the dimension of the vectors. The resulting descriptors are applied to predict gas-phase reaction energies using linear regression with accuracies that exceed the commonly employed group additivity approach. They are also applied to quant. assess model compound similarity, and the results are consistent with chem. intuition. This workflow for creating vector representations of complex mol. systems requires no input from electronic structure calculations, and it is expected to be applicable to other similar systems where vector representations are needed. (c) 2020 American Institute of Physics.

Journal of Chemical Physics published new progress about Algorithm. 584-02-1 belongs to class alcohols-buliding-blocks, name is 3-Pentanol, and the molecular formula is C5H12O, Quality Control of 584-02-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Cheng, Shih-Chun’s team published research in Metabolomics in 2019-11-30 | CAS: 97-67-6

Metabolomics published new progress about Algorithm. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Computed Properties of 97-67-6.

Cheng, Shih-Chun published the artcileMetabolomic biomarkers in cervicovaginal fluid for detecting endometrial cancer through nuclear magnetic resonance spectroscopy, Computed Properties of 97-67-6, the main research area is metabolome biomarker cervicovaginal fluid endometrial cancer NMR spectroscopy; Biomarkers; Endometrial neoplasms; Magnetic resonance spectroscopy; Metabolomics.

Endometrial cancer (EC) is one of the most common gynecol. neoplasms in developed countries but lacks screening biomarkers. We aim to identify and validate metabolomic biomarkers in cervicovaginal fluid (CVF) for detecting EC through NMR (NMR) spectroscopy. We screened 100 women with suspicion of EC and benign gynecol. conditions, and randomized them into the training and independent testing datasets using a 5:1 study design. CVF samples were analyzed using a 600-MHz NMR spectrometer equipped with a cryoprobe. Four machine learning algorithms-support vector machine (SVM), partial least squares discriminant anal. (PLS-DA), random forest (RF), and logistic regression (LR), were applied to develop the model for identifying metabolomic biomarkers in cervicovaginal fluid for EC detection. A total of 54 women were eligible for the final anal., with 21 EC and 33 non-EC. From 29 identified metabolites in cervicovaginal fluid samples, the top-ranking metabolites chosen through SVM, RF and PLS-DA which existed in independent metabolic pathways, i.e. phosphocholine, malate, and asparagine, were selected to build the prediction model. The SVM, PLS-DA, RF, and LR methods all yielded area under the curve values between 0.88 and 0.92 in the training dataset. In the testing dataset, the SVM and RF methods yielded the highest accuracy of 0.78 and the specificity of 0.75 and 0.80, resp. Phosphocholine, asparagine, and malate from cervicovaginal fluid, which were identified and independently validated through models built using machine learning algorithms, are promising metabolomic biomarkers for the detection of EC using NMR spectroscopy.

Metabolomics published new progress about Algorithm. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Computed Properties of 97-67-6.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Purcaro, Giorgia’s team published research in Metabolomics in 2019-01-31 | CAS: 124-76-5

Metabolomics published new progress about Algorithm. 124-76-5 belongs to class alcohols-buliding-blocks, name is rel-(1R,2R,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol, and the molecular formula is C10H18O, Recommanded Product: rel-(1R,2R,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol.

Purcaro, Giorgia published the artcileBreath metabolome of mice infected with Pseudomonas aeruginosa, Recommanded Product: rel-(1R,2R,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol, the main research area is metabolome breath volatile organic compound Pseudomonas infection; Breath; Comprehensive gas chromatography-time-of-flight mass spectrometer (GC×GC ToF MS); Pseudomonas aeruginosa; Volatile organic compounds (VOCs).

The measurement of specific volatile organic compounds in breath has been proposed as a potential diagnostic for a variety of diseases. The most well-studied bacterial lung infection in the breath field is that caused by Pseudomonas aeruginosa. To determine a discriminatory core of mols. in the “”breath-print”” of mice during a lung infection with four strains of P. aeruginosa (PAO1, PA14, PAK, PA7). Furthermore, we attempted to extrapolate a strain-specific “”breath-print”” signature to investigate the possibility of recapitulating the genetic phylogenetic groups (Stewart et al. Pathog Dis 71(1), 20-25, 2014. https://doi.org/10.1111/2049-632X.12107). Breath was collected into a Tedlar bag and shortly after drawn into a thermal desorption tube. The latter was then analyzed into a comprehensive multidimensional gas chromatog. coupled with a time-of-flight mass spectrometer. Random forest algorithm was used for selecting the most discriminatory features and creating a prediction model. Three hundred and one mols. were significantly different between animals infected with P. aeruginosa, and those given a sham infection (PBS) or inoculated with UV-killed P. aeruginosa. Of those, nine metabolites could be used to discriminate between the three groups with an accuracy of 81%. Hierarchical clustering showed that the signature from breath was due to a specific response to live bacteria instead of a generic infection response. Furthermore, we identified ten addnl. volatile metabolites that could differentiate mice infected with different strains of P. aeruginosa. A phylogram generated from the ten metabolites showed that PAO1 and PA7 were the most distinct group, while PAK and PA14 were interspersed between the former two groups. To the best of our knowledge, this is the first study to report on a core murine breath print, as well as, strain level differences between the compounds in breath. We provide identifications (by running com. available anal. standards) to five breath compounds that are predictive of P. aeruginosa infection.

Metabolomics published new progress about Algorithm. 124-76-5 belongs to class alcohols-buliding-blocks, name is rel-(1R,2R,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol, and the molecular formula is C10H18O, Recommanded Product: rel-(1R,2R,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Winter, Klaus’s team published research in Journal of Experimental Botany in 2019 | CAS: 97-67-6

Journal of Experimental Botany published new progress about Aizoaceae. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Application of (S)-2-hydroxysuccinic acid.

Winter, Klaus published the artcileEcophysiology of constitutive and facultative CAM photosynthesis, Application of (S)-2-hydroxysuccinic acid, the main research area is review Kalanchoe crassulacean acid metabolism photosynthesis; Hatiora ; Kalanchoe ; Portulaca ; Acidity; carbon assimilation; evolution; facultative CAM; ontogeny; photosynthesis; photosynthetic intermediate.

In plants exhibiting crassulacean acid metabolism (CAM), CAM photosynthesis almost always occurs together with C3 photosynthesis, and occasionally with C4 photosynthesis. Depending on species, ontogeny, and environment, CAM input to total carbon gain can vary from values of <1% to 100%. The wide range of CAM phenotypes between and within species is a fascinating example of functional diversity and plasticity, but poses a significant challenge when attempting to define CAM. CO2 gas exchange experiments designed for this review illustrate key patterns of CAM expression and highlight distinguishing features of constitutive and facultative CAM. Furthermore, they help to address frequently recurring questions on CAM terminol. The functional and evolutionary significance of contrasting CAM phenotypes and of intermediate states between extremes is discussed. Results from a study on nocturnal malate accumulation in 50 species of Aizoaceae exposed to drought and salinity stress suggest that facultative CAM is more widespread amongst vascular plants than previously thought. Journal of Experimental Botany published new progress about Aizoaceae. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Application of (S)-2-hydroxysuccinic acid.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

van Vuuren, S.’s team published research in South African Journal of Botany in 2019-11-30 | CAS: 124-76-5

South African Journal of Botany published new progress about Agathosma. 124-76-5 belongs to class alcohols-buliding-blocks, name is rel-(1R,2R,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol, and the molecular formula is C10H18O, Quality Control of 124-76-5.

van Vuuren, S. published the artcileIndigenous South African essential oils as potential antimicrobials to treat foot odour (bromodosis), Quality Control of 124-76-5, the main research area is foot odor therapy essential oil antimicrobial.

Foot odor, known as bromodosis, is produced as a result of a combination of exocrine secretions and bacterial growth on the feet. Several com. essential oils have demonstrated promise in inhibiting the growth of odor-causing bacteria as a novel strategy to offer relief from this dermatol. problem. South Africa harbours an abundance of diverse indigenous flora which has shown favorable antimicrobial properties. As such, the potential application of natural products against bromodosis-causing Brevibacterium species with the aim of finding cosmetically appealing and promising African sourced essential oils capable of masking foot malodour was the focus of this study. The antimicrobial activity of 41 oils were investigated using the microdilution assay where the min. inhibitory concentrations (MICs) were reported against Brevibacillus agri (ATCC 51663), Brevibacillus epidermidis (DSM 20660) and Brevibacillus linens (DSM 20425). Ninety-five percent of the oils tested displayed noteworthy activity (MIC �1.00 mg/mL) against B. agri with S. africana-caerulea demonstrating the highest activity (0.03 mg/mL) overall. Thirty-one essential oils displayed noteworthy activity (MIC �1.00 mg/mL) against B. epidermidis. Two essential oils (Plectranthus grandidentatus and Salvia africana-lutea) displayed noteworthy activity (MIC = 1.00 mg/mL) against B. linens. The major constituents for each oil was determined using gas chromatog. coupled to mass spectrometry and limonene appears to be the most frequent essential oil constituent (23 of the oils). The olfactory properties of the essentials oils displaying noteworthy activity were further considered. These findings presenting interesting anti-bromodosis activity hold great potential, as not only do the selected oils have antimicrobial activity, but the pleasant aroma of these aromatic botanicals can further mask and control foot odor.

South African Journal of Botany published new progress about Agathosma. 124-76-5 belongs to class alcohols-buliding-blocks, name is rel-(1R,2R,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol, and the molecular formula is C10H18O, Quality Control of 124-76-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Quek, Lake-Ee’s team published research in iScience in 2020-02-21 | CAS: 97-67-6

iScience published new progress about Adipocyte. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Category: alcohols-buliding-blocks.

Quek, Lake-Ee published the artcileDynamic 13C Flux Analysis Captures the Reorganization of Adipocyte Glucose Metabolism in Response to Insulin, Category: alcohols-buliding-blocks, the main research area is metabolome insulin glucose metabolism adipocyte dynamic carbon flux analysis; Biological Sciences; Flux Data; Metabolic Flux Analysis; Metabolomics.

Cellular metabolism is dynamic, but quantifying non-steady metabolic fluxes by stable isotope tracers presents unique computational challenges. Here, we developed an efficient 13C-tracer dynamic metabolic flux anal. (13C-DMFA) framework for modeling central carbon fluxes that vary over time. We used B-splines to generalize the flux parameterization system and to improve the stability of the optimization algorithm. As proof of concept, we investigated how 3T3-L1 cultured adipocytes acutely metabolize glucose in response to insulin. Insulin rapidly stimulates glucose uptake, but intracellular pathways responded with differing speeds and magnitudes. Fluxes in lower glycolysis increased faster than those in upper glycolysis. Glycolysis fluxes rose disproportionally larger and faster than the tricarboxylic acid cycle, with lactate a primary glucose end product. The uncovered array of flux dynamics suggests that glucose catabolism is addnl. regulated beyond uptake to help shunt glucose into appropriate pathways. This work demonstrates the value of using dynamic intracellular fluxes to understand metabolic function and pathway regulation.

iScience published new progress about Adipocyte. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Category: alcohols-buliding-blocks.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Yang, Huan’s team published research in Cellular Signalling in 2020-11-30 | CAS: 97-67-6

Cellular Signalling published new progress about Adipocyte. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Safety of (S)-2-hydroxysuccinic acid.

Yang, Huan published the artcileSigma-1 receptor ablation impedes adipocyte-like differentiation of mouse embryonic fibroblasts, Safety of (S)-2-hydroxysuccinic acid, the main research area is sigma 1 adipocyte differentiation embryonic fibroblast; Adipogenic induction; Body weight gain; Mouse embryonic fibroblast; Sigma-1 receptor.

The sigma-1 receptor (Sig1R) is a unique ligand-operated endoplasmic reticulum (ER) protein without any mammalian homolog. It has long been a pharmacol. target for intervention of psychiatric disorders, and recently garnered refreshed interest for its neuroprotective potential. Though reported to modulate various intracellular events, its influence on cell identity is little known. We explored a role for Sig1R in adipocyte differentiation. We induced adipogenic differentiation of mouse embryonic fibroblasts (MEFs) with a differentiation medium. MEFs were isolated from Sigmar1-/- and Sigmar1+/+ mice. The induced adipocyte-like phenotype was detected through Western blots of master transcription factors (PPARγ, CEBPA, SREBP1, SREBP2), lipogenic proteins (FABP4, ACC1, ACAT2), and Oil-Red-O staining of lipids. We found that the induced upregulation of these proteins and lipid accumulation were severely mitigated in Sigmar1-/- (vs Sigmar1+/+) MEFs. Sig1R activation with a selective agonist (PRE084) increased Sig1R protein and further enhanced the induced adipocyte-like phenotype in Sigmar1+/+ MEFs. We also determined mouse body weight gain induced by high-fat diet for 6 mo, which was impeded in Sigmar1-/- (vs Sigmar1+/+) male mice. In summary, genetic ablation of Sig1R impairs, and agonist activation of Sig1R enhances adipocyte-like phenotype of induced MEFs. In vivo, Sig1R ablation impedes the body weight gain of male mice on high-fat diet. This study warrants further investigation of a previously unrecognized role for Sig1R in adipocyte differentiation.

Cellular Signalling published new progress about Adipocyte. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Safety of (S)-2-hydroxysuccinic acid.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

D’souza, Kenneth’s team published research in Nutrients in 2020 | CAS: 97-67-6

Nutrients published new progress about Adipocyte. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Recommanded Product: (S)-2-hydroxysuccinic acid.

D’souza, Kenneth published the artcileWhey peptides stimulate differentiation and lipid metabolism in adipocytes and ameliorate lipotoxicity-induced insulin resistance in muscle cells, Recommanded Product: (S)-2-hydroxysuccinic acid, the main research area is whey peptide lipid adipocyte lipotoxicity insulin resistance muscle cell; PPAR; adipocytes; differentiation; insulin resistance; lipolysis; lipotoxicity; metabolism; mitochondria; myocytes; whey peptides.

Deregulation of lipid metabolism and insulin function in muscle and adipose tissue are hallmarks of systemic insulin resistance, which can progress to type 2 diabetes. While previous studies suggested that milk proteins influence systemic glucose homeostasis and insulin function, it remains unclear whether bioactive peptides generated from whey alter lipid metabolism and its accumulation in muscle and adipose tissue. Therefore, we incubated murine 3T3-L1 preadipocytes and C2C12 myotubes with a whey peptide mixture produced through pepsin-pancreatin digestion, mimicking peptides generated in the gut from whey protein hydrolysis, and examined its effect on indicators of lipid metabolism and insulin sensitivity. Whey peptides, particularly those derived from bovine serum albumin (BSA), promoted 3T3-L1 adipocyte differentiation and triacylglycerol (TG) accumulation in accordance with peroxisome proliferator-activated receptor γ (PPARγ) upregulation. Whey/BSA peptides also increased lipolysis and mitochondrial fat oxidation in adipocytes, which was associated with the upregulation of peroxisome proliferator-activated receptor δ (PPARδ). In C2C12 myotubes, whey but not BSA peptides ameliorated palmitate-induced insulin resistance, which was associated with reduced inflammation and diacylglycerol accumulation, and increased sequestration of fatty acids in the TG pool. Taken together, our study suggests that whey peptides generated via pepsin-pancreatin digestion profoundly alter lipid metabolism and accumulation in adipocytes and skeletal myotubes.

Nutrients published new progress about Adipocyte. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Recommanded Product: (S)-2-hydroxysuccinic acid.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Martinez, Alina M.’s team published research in ACS Applied Materials & Interfaces in 2022-06-15 | CAS: 7575-23-7

ACS Applied Materials & Interfaces published new progress about Adhesives. 7575-23-7 belongs to class alcohols-buliding-blocks, name is Pentaerythritol tetra(3-mercaptopropionate), and the molecular formula is C17H28O8S4, Recommanded Product: Pentaerythritol tetra(3-mercaptopropionate).

Martinez, Alina M. published the artcileTunable Surfaces and Films from Thioester Containing Microparticles, Recommanded Product: Pentaerythritol tetra(3-mercaptopropionate), the main research area is tunable surface film thioester microparticle.

Reported here, thioester containing microparticles were designed with 40% excess thiol to enable thiol-thioester exchange to facilitate the formation of cohesive films from the particles. A thiol-Michael dispersion polymerization was used to generate thioester containing microparticles with a diameter of 4.0 ± 0.4μm. The particles were then swollen with a base at varying concentrations to activate the thiol-thioester exchange and subsequently compressed between two glass slides. Resultant films were characterized over time with profilometry and at. force microscopy (AFM) to infer particle coalescence at different catalyst loadings and times. Tensile tests were performed confirming the structural integrity of the particle-based films. Furthermore, microparticles were welded to a nondynamic network demonstrating feasibility in potential applications to generate materials containing differing mech. properties. Being able to control the functionality of particles, and thus mech. properties of the resultant films, is also important for applications in coatings, adhesives, and 3D printing where spatial patterning or selective material property control is needed.

ACS Applied Materials & Interfaces published new progress about Adhesives. 7575-23-7 belongs to class alcohols-buliding-blocks, name is Pentaerythritol tetra(3-mercaptopropionate), and the molecular formula is C17H28O8S4, Recommanded Product: Pentaerythritol tetra(3-mercaptopropionate).

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts