Garcia-Caballero, Melissa’s team published research in Nature Metabolism in 2019-07-31 | CAS: 97-67-6

Nature Metabolism published new progress about Apoptosis. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Safety of (S)-2-hydroxysuccinic acid.

Garcia-Caballero, Melissa published the artcileRole and therapeutic potential of dietary ketone bodies in lymph vessel growth, Safety of (S)-2-hydroxysuccinic acid, the main research area is dietary ketone body lymph vessel growth therapeutics.

Abstract: Lymphatic vessels (LVs), lined by lymphatic endothelial cells (LECs), are indispensable for life1. However, the role of metabolism in LECs has been incompletely elucidated. In the present study, it is reported that LEC-specific loss of OXCT1, a key enzyme of ketone body oxidation2, reduces LEC proliferation, migration and vessel sprouting in vitro and impairs lymphangiogenesis in development and disease in Prox1ΔOXCT1 mice. Mechanistically, OXCT1 silencing lowers acetyl-CoA levels, tricarboxylic acid cycle metabolite pools, and nucleotide precursor and deoxynucleotide triphosphate levels required for LEC proliferation. Ketone body supplementation to LECs induces the opposite effects. Notably, elevation of lymph ketone body levels by a high-fat, low-carbohydrate ketogenic diet or by administration of the ketone body β-hydroxybutyrate increases lymphangiogenesis after corneal injury and myocardial infarction. Intriguingly, in a mouse model of microsurgical ablation of LVs in the tail, which repeats features of acquired lymphoedema in humans, the ketogenic diet improves LV function and growth, reduces infiltration of anti-lymphangiogenic immune cells and decreases edema, suggesting a novel dietary therapeutic opportunity.

Nature Metabolism published new progress about Apoptosis. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Safety of (S)-2-hydroxysuccinic acid.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhu, Yuanting’s team published research in International Journal of Biological Macromolecules in 2019-01-31 | CAS: 59-23-4

International Journal of Biological Macromolecules published new progress about Apoptosis. 59-23-4 belongs to class alcohols-buliding-blocks, name is (2R,3S,4S,5R)-2,3,4,5,6-Pentahydroxyhexanal, and the molecular formula is C6H12O6, Synthetic Route of 59-23-4.

Zhu, Yuanting published the artcileExopolysaccharides produced by yogurt-texture improving Lactobacillus plantarum RS20D and the immunoregulatory activity, Synthetic Route of 59-23-4, the main research area is Lactobacillus macrophage yogurt texture immunoregulation nitric oxide; Exopolysaccharide; Immunoregulation; Lactobacillus plantarum; Yogurt.

The strain RS20D capable of significantly improving yogurt texture was isolated from traditional fermented vegetable products, and identified as Lactobacillus plantarum RS20D. The total exopolysaccharides (EPS) were prepared from reconstituted skim milk fermentation by RS20D, and purified through DEAE-Sepharose CL-6B and Sephadex G-100, and consequently the purified fraction designated as RS-r2 was obtained. The further work aimed to elucidate the structural features of RS-r2 via FT-IR spectrum, HPSEC and monosaccharide composition anal. was carried out. The results showed that RS-r2 was a novel acidic heteropolysaccharide mainly consisted of glucose, galactose and glucosamine in a molar ratio of 2.0:1.5:1. The mol. weight was estimated to be 1.69 × 106 Da. The EPS had a high degradation temperature (250 °C), suggesting its high thermal stability. SEM and AFM anal. of EPS further revealed chain microstructure anchored with many regular spherical shape in aqueous solution In vitro test showed that total EPS secreted by RS20D could stimulate macrophage RAW264.7 to release NO significantly and up-regulated the gene expression of pro-inflammatory cytokines at the mRNA level. Current study suggested that RS20D could be a potential source of immunoregulatory polysaccharide and may be applied as a functional starter culture to improve yogurt texture in the dairy industry.

International Journal of Biological Macromolecules published new progress about Apoptosis. 59-23-4 belongs to class alcohols-buliding-blocks, name is (2R,3S,4S,5R)-2,3,4,5,6-Pentahydroxyhexanal, and the molecular formula is C6H12O6, Synthetic Route of 59-23-4.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

He, Nianzhe’s team published research in Biochemical and Biophysical Research Communications in 2019-05-14 | CAS: 22483-09-6

Biochemical and Biophysical Research Communications published new progress about Apoptosis. 22483-09-6 belongs to class alcohols-buliding-blocks, name is 2,2-Dimethoxyethanamine, and the molecular formula is C4H11NO2, Product Details of C4H11NO2.

He, Nianzhe published the artcileDiscovery of selective Mcl-1 inhibitors via structure-based design and structure-activity relationship analysis, Product Details of C4H11NO2, the main research area is cervical cancer Mcl1 Bcl2 anticancer apoptosis structure activity relationship; Apoptosis; Cancer; Mcl-1; Protein–protein interaction.

Based on Nap-1, a Mcl-1/Bcl-2 dual inhibitor reported by our group, we carried out a structure-guided mol. design and structure-activity relationship (SAR) anal. to study structural features contributing to Mcl-1 binding selectivity and affinity. A series of derivatives of Nap-1 with various pharmacophores were synthesized and among them a dual Mcl-1/Bcl-2 inhibitor A4 with enhanced affinities (IC50 = 0.15 μM for Mcl-1, 0.43 μM for Bcl-2) and a selective Mcl-1 inhibitor B9 with a 20-fold selectivity over Bcl-2 (IC50 = 0.51 μM vs 9.46 μM) were obtained by enzyme linked immunosorbent assay (ELISA). The SAR data and binding modes of A4 and B9 investigated by 2D-NMR derived docking study illustrated that p2 pockets exhibiting different geometry and binding features between Mcl-1 and Bcl-2 contribute to specific binding properties of Mcl-1. In addition, apoptosis-inducing potencies of A4 and B9 were consistent with their binding selectivity determined in vitro.

Biochemical and Biophysical Research Communications published new progress about Apoptosis. 22483-09-6 belongs to class alcohols-buliding-blocks, name is 2,2-Dimethoxyethanamine, and the molecular formula is C4H11NO2, Product Details of C4H11NO2.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Yang, Nanmu’s team published research in Journal of Cellular Physiology in 2021-05-31 | CAS: 97-67-6

Journal of Cellular Physiology published new progress about Apoptosis. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Synthetic Route of 97-67-6.

Yang, Nanmu published the artcileHBXIP drives metabolic reprogramming in hepatocellular carcinoma cells via METTL3-mediated m6A modification of HIF-1α, Synthetic Route of 97-67-6, the main research area is hepatocellular carcinoma HBXIP METTL3 m6A HIF1alpha hepatocyte prognosis; HBXIP; HIF-1α; METTL3; N6-methyladenosine methylation; hepatocellular carcinoma.

Cancer cells sustain high levels of glycolysis and glutaminolysis via reprogramming of intracellular metabolism, which represents a driver of hepatocellular carcinoma (HCC) progression. Understanding the mechanisms of cell metabolic reprogramming may present a new basis for liver cancer treatment. Herein, we collected HCC tissues and noncancerous liver tissues and found hepatitis B virus X-interacting protein (HBXIP) was found to be upregulated in HCC tissues and associated with poor prognosis. The N6-methyladenosine (m6A) level of hypoxia-inducible factor-1α (HIF-1α) in HCC cells was evaluated after the intervention of METTL3. The possible m6A site of HIF-1α was queried and the binding relationship between METTL3 and HIF-1α was verified. The interference of HBXIP suppressed HCC malignant behaviors and inhibited the Warburg effect in HCC cells. METTL3 was upregulated in HCC tissues and pos. regulated by HBXIP. Overexpression of METTL3 restored cell metabolic reprogramming in HCC cells with partial loss of HBXIP. HBXIP mediated METTL3 to promote the metabolic reprogramming and malignant biol. behaviors of HCC cells. The levels of total m6A in HCC cells and m6A in HIF-1α were increased. METTL3 had a binding relationship with HIF-1α and mediated the m6A modification of HIF-1α. In conclusion, HBXIP drives metabolic reprogramming in HCC cells via METTL3-mediated m6A modification of HIF-1α.

Journal of Cellular Physiology published new progress about Apoptosis. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Synthetic Route of 97-67-6.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Yu, Juan’s team published research in International Journal of Biological Macromolecules in 2020-09-01 | CAS: 59-23-4

International Journal of Biological Macromolecules published new progress about Apoptosis. 59-23-4 belongs to class alcohols-buliding-blocks, name is (2R,3S,4S,5R)-2,3,4,5,6-Pentahydroxyhexanal, and the molecular formula is C6H12O6, Related Products of alcohols-buliding-blocks.

Yu, Juan published the artcileThe structural characteristics of an acid-soluble polysaccharide from Grifola frondosa and its antitumor effects on H22-bearing mice, Related Products of alcohols-buliding-blocks, the main research area is Grifola hepatoma macrophage proliferation mannose glucose anticancer; Anti-tumor activity; Grifola frondosa acid-soluble polysaccharide; Structural characteristics.

The edible mushroom G. frondosa has been used as a kind of functional food for the prevention and therapy of various diseases in Asian countries. In the present work, a novel acid-soluble polysaccharide (GFAP) was successfully isolated from G. frondosa under room temperature and hydrochloric acid solution treatment. Results of chem. composition anal., UV and HPGPC spectra showed that GFAP mainly contained 94.28% of carbohydrate with the average mol. weight of about 644.9 kDa. GC, FT-IR, NMR and methylation anal. further indicated that GFAP was a neutral sugar mainly composed of (1 â†?3)-β-D-Glcp and (1 â†?3)-α-D-Manp. The in vivo antitumor experiments demonstrated that GFAP could effectively protect thymuses and spleens of tumor-bearing mice and inhibit the growth of H22 solid tumors with the inhibitory rate of 36.72%. Besides, GFAP could significantly improve the activities of NK cells, macrophages, CD19+ B cells and CD4+ T cells, leading to the apoptosis of H22 cells via G0/G1 phase arrested. Our data demonstrated that GFAP holds great application prospect to be a safe and effective antitumor adjuvant in the future.

International Journal of Biological Macromolecules published new progress about Apoptosis. 59-23-4 belongs to class alcohols-buliding-blocks, name is (2R,3S,4S,5R)-2,3,4,5,6-Pentahydroxyhexanal, and the molecular formula is C6H12O6, Related Products of alcohols-buliding-blocks.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Torres, Maria J.’s team published research in Life Sciences in 2019-12-15 | CAS: 97-67-6

Life Sciences published new progress about Apoptosis. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Product Details of C4H6O5.

Torres, Maria J. published the artcileIntracardiac administration of ephrinA1-Fc preserves mitochondrial bioenergetics during acute ischemia/reperfusion injury, Product Details of C4H6O5, the main research area is ischemia reperfusion injury intracardiac ephrinA1 mitochondrial bioenergetics; Cardioprotection; Mitochondrial bioenergetics; Myocardial infarction; ephrinA1.

Herein, 10 wk-old B6129SF2/J male mice were exposed to acute ischemia/reperfusion injury immediately followed by intracardiac injection of either EphrinA1-Fc or IgG-Fc. After 24 h of reperfusion, sections of the infarct margin in the left ventricle were imaged via transmission electron microscopy, and mitochondrial function was assessed in both permeabilized fibers and isolated mitochondria, to examine mitochondrial structure, function, and energetics in the early stages of repair. At a structural level, EphrinA1-Fc administration prevented the I/R-induced loss of sarcomere alignment and mitochondrial organization along the Z disks, as well as disorganization of the cristae and loss of inter-mitochondrial junctions. Preservation of cardiac bioenergetics was not due to changes in mitochondrial JH2O2 emitting potential, membrane potential, ADP affinity, efficiency of ATP production, or activity of the main dehydrogenase enzymes, suggesting that EphrinA1-Fc indirectly maintains respiratory function via preservation of the mitochondrial network. Moreover, these protective effects were lost in isolated mitochondria, further emphasizing the importance of the intact cardiomyocyte ultrastructure in mitochondrial energetics. Collectively, these data suggest that intracardiac injection of EphrinA1-Fc protects cardiac function by preserving cardiomyocyte structure and mitochondrial bioenergetics, thus emerging as a potential therapeutic strategy in I/R injury.

Life Sciences published new progress about Apoptosis. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Product Details of C4H6O5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Hou, Jingang’s team published research in Molecular Medicine Reports in 2019-11-30 | CAS: 59-23-4

Molecular Medicine Reports published new progress about Apoptosis. 59-23-4 belongs to class alcohols-buliding-blocks, name is (2R,3S,4S,5R)-2,3,4,5,6-Pentahydroxyhexanal, and the molecular formula is C6H12O6, HPLC of Formula: 59-23-4.

Hou, Jingang published the artcileD-galactose induces astrocytic aging and contributes to astrocytoma progression and chemoresistance via cellular senescence, HPLC of Formula: 59-23-4, the main research area is glioblastoma astrocytoma astrocyte aging progression D galactose anticancer resistance.

In the present study, we aimed to investigate the involvement of astrocytes in D-galactose-induced brain aging in vitro. We found that D-galactose treatment significantly suppressed cell viability and induced cellular senescence. in addition, as of the accumulation of senescent cells, we proposed that the senescence-associated secretory phenotype (SaSP) can stimulate age-related pathologies and chemoresistance in brain. consistently, senescent astrocytic CRT cells induced by D-galactose exhibited increases in the levels of IL-6 and IL-8 via NF-kB activation, which are major SaSP components and inflammatory cytokines. conditioned medium prepared from senescent astrocytic CRT cells significantly promoted the viability of brain tumor cells (u373-MG and n2a). importantly, conditioned medium greatly suppressed the cytotoxicity of u373-MG cells induced by temozolomide, and reduced the protein expression levels of neuron marker neuron-specific class III beta-tubulin, but markedly increased the levels of c-Myc in N2a cells. Thus, our findings demonstrated that D-galactose treatment might mimic brain aging, and that D-galactose could contribute to brain inflammation and tumor progression through inducing the accumulation of senescent-secretory astrocytes.

Molecular Medicine Reports published new progress about Apoptosis. 59-23-4 belongs to class alcohols-buliding-blocks, name is (2R,3S,4S,5R)-2,3,4,5,6-Pentahydroxyhexanal, and the molecular formula is C6H12O6, HPLC of Formula: 59-23-4.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Yu, Juan’s team published research in International Journal of Biological Macromolecules in 2019-04-01 | CAS: 59-23-4

International Journal of Biological Macromolecules published new progress about Apoptosis. 59-23-4 belongs to class alcohols-buliding-blocks, name is (2R,3S,4S,5R)-2,3,4,5,6-Pentahydroxyhexanal, and the molecular formula is C6H12O6, SDS of cas: 59-23-4.

Yu, Juan published the artcileApoptosis of human gastric carcinoma MGC-803 cells induced by a novel Astragalus membranaceus polysaccharide via intrinsic mitochondrial pathways, SDS of cas: 59-23-4, the main research area is Astragalus gastric carcinoma cell apoptosis polysaccharide intrinsic mitochondrial pathway; Cold-water soluble Astragalus membranaceus polysaccharide; Human gastric cancer; Mitochondrial apoptosis pathway.

In our previous study, a novel cold-water-soluble polysaccharide (APS4) was isolated from Astragalus membranaceus. This study aimed to evaluate the proliferation inhibition and apoptosis-induced effects of APS4 on human gastric carcinoma MGC-803 cells and to investigate its potential mol. mechanism. It was found that APS4 could significantly suppress the proliferation of MGC-803 cells in a concentration- and time-dependent manner. Morphol. observations and Annexin V-FITC/PI staining showed that APS4-treated MGC-803 cells exhibited typical morphol. characteristics of apoptosis. Cell cycle detection revealed that APS4 could arrest MGC-803 cells in S phase of the cell cycle. Addnl., APS4 treatment could induce the mitochondria-dependent apoptosis, which was closely related to the accumulation of intracellular ROS, the collapse of mitochondrial membrane potential, the increase of the pro-apoptotic/anti-apoptotic (Bax/Bcl-2) ratios, the release of cytochrome c, further activating the expression of caspase-9/-3 and the cleavage of poly-ADP-ribose polymerase (PARP) in MGC-803 cells. Taken together, our results suggested that APS4 had observable apoptosis-induced effects on MGC-803 cells via arresting the cell cycle in S phase and inducing the intrinsic mitochondrial apoptosis pathway.

International Journal of Biological Macromolecules published new progress about Apoptosis. 59-23-4 belongs to class alcohols-buliding-blocks, name is (2R,3S,4S,5R)-2,3,4,5,6-Pentahydroxyhexanal, and the molecular formula is C6H12O6, SDS of cas: 59-23-4.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wei, Chaozhi’s team published research in Food and Chemical Toxicology in 2020-12-31 | CAS: 124-76-5

Food and Chemical Toxicology published new progress about Apoptosis. 124-76-5 belongs to class alcohols-buliding-blocks, name is rel-(1R,2R,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol, and the molecular formula is C10H18O, Safety of rel-(1R,2R,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol.

Wei, Chaozhi published the artcileThe characteristics of patulin detoxification by Lactobacillus plantarum 13M5, Safety of rel-(1R,2R,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol, the main research area is lactobacillus plantarum patulin characteristic detoxification; Degradation; Lactic acid bacteria; Lactobacillus plantarum; Patulin; Toxicity.

Patulin (PAT) is a widespread mycotoxin that harms the health of both humans and animals. In this study, among the 17 tested Lactobacillus plantarum strains, L. plantarum 13M5, isolated from traditional Chinese fermented foods, showed the highest PAT degradation rate of up to 43.8% (PAT 5 mg/L). Evaluation of the living and dead 13M5 cells revealed that only the living cells had the ability to remove PAT and degrade it into E-ascladiol. A cell-based assay revealed that L. plantarum 13M5 administration alleviated PAT-induced injuries in Caco-2 cells, including cytotoxicity, oxidative stress, and tight junction disruption. Our results suggest that L. plantarum 13M5 has the potential to reduce PAT toxicity and can thus be used as a probiotic supplement to reduce or eliminate the toxicity of PAT ingested from diet.

Food and Chemical Toxicology published new progress about Apoptosis. 124-76-5 belongs to class alcohols-buliding-blocks, name is rel-(1R,2R,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol, and the molecular formula is C10H18O, Safety of rel-(1R,2R,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Khalil, Samah R.’s team published research in Gene in 2020-03-10 | CAS: 42822-86-6

Gene published new progress about Apoptosis. 42822-86-6 belongs to class alcohols-buliding-blocks, name is 2-(2-Hydroxypropan-2-yl)-5-methylcyclohexanol, and the molecular formula is C10H20O2, Safety of 2-(2-Hydroxypropan-2-yl)-5-methylcyclohexanol.

Khalil, Samah R. published the artcileRestoring strategy of ethanolic extract of Moringa oleifera leaves against Tilmicosin-induced cardiac injury in rats: Targeting cell apoptosis-mediated pathways, Safety of 2-(2-Hydroxypropan-2-yl)-5-methylcyclohexanol, the main research area is Moringa leaf extract Tilmicosin heart injury apoptosis antioxidant; Apaf-1; Apoptosis; Bcl-2; Caspase-3; Moringa oleifera; Tilmicosin.

Tilmicosin (Til), an effective macrolide antibiotic, is widely used against respiratory diseases in livestock; however, its treatment is associated with cardiac tissue impairments. In this study, the ethanolic extract of Moringa oleifera (MO) leaves was investigated at two doses (400 and 800 mg/kg body weight [bw], orally) to determine its role in counteracting the effects of Til treatment (75 mg/kg bw) on the cardiac tissue in rats, exploring the oxidative stress-mediated damage and apoptosis. A high dose of MO ethanolic extract elicits considerable changes in the body weight, reduces the mortality rate, neutralizes the impaired cardiac injury markers, improves antioxidant endpoints (total antioxidant capacity, superoxide dismutase, catalase activity, and reduced glutathione level). Also it attenuates the oxidative stress indexes (total reactive oxygen species, 8-hydroxy-2-deoxyguanosine, lipid peroxides [malondialdehyde], and protein carbonyl levels) that are associated with Til injection. The co-administration of MO ethanolic extract with Til considerably modulates the expression of apoptosis pathway-encoding genes (Bcl-2, caspase-3, Bax, p53, apoptosis-inducing factor, and Apaf-1), particularly in the high-dose group. Our results support that the concurrent administration of MO ethanolic extract with Til at a dose of 800 mg/kg bw increases the protective activity of the antioxidant system and delays or slows the pathol. development of cardiotoxicity mediated by Til injection.

Gene published new progress about Apoptosis. 42822-86-6 belongs to class alcohols-buliding-blocks, name is 2-(2-Hydroxypropan-2-yl)-5-methylcyclohexanol, and the molecular formula is C10H20O2, Safety of 2-(2-Hydroxypropan-2-yl)-5-methylcyclohexanol.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts