Brief introduction of C8H10O2

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wu, D; Bu, QQ; Guo, C; Dai, B; Liu, N or concate me.. SDS of cas: 105-13-5

Authors Wu, D; Bu, QQ; Guo, C; Dai, B; Liu, N in ELSEVIER published article about SELECTIVE N-ALKYLATION; ONE-POT SYNTHESIS; BORROWING HYDROGEN; EFFICIENT CATALYSTS; BETA-ALKYLATION; IRIDIUM COMPLEX; ALCOHOLS; RUTHENIUM; SULFONAMIDES; AMINATION in [Wu, Di; Bu, Qingqing; Dai, Bin; Liu, Ning] Shihezi Univ, Sch Chem & Chem Engn, Key Lab Green Proc Chem Engn Xinjiang Bingtuan, North Fourth Rd, Shihezi 832003, Xinjiang, Peoples R China; [Guo, Cheng] Zhejiang Univ, Affiliated Hosp 2, Sch Med, Canc Inst, Hangzhou 310009, Zhejiang, Peoples R China in 2021, Cited 73. SDS of cas: 105-13-5. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Multi-amino groups and nitrogen donors compound was discovered as an organocatalyst for N-alkylation of alcohols with amines in the presence of Mo(CO)6. The Mo(CO)6/organocatalyst binary system has shown to be a highly active catalyst for the N-alkylation reaction between alcohols and amines with excellent tolerance of variable starting materials bearing different functional groups. Of particular note, this method possessing a superiority selectivity in the synthesis of N-alkylated amines or imines, which can be controlled by the reaction temperature. The cooperative catalysis mechanism in combination of Mo(CO)6 with organocatalyst was elucidated by control experiments.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wu, D; Bu, QQ; Guo, C; Dai, B; Liu, N or concate me.. SDS of cas: 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Why do aromatic interactions matter of compound:(4-Methoxyphenyl)methanol

Application In Synthesis of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Coufourier, S; Ndiaye, D; Gaillard, QG; Bettoni, L; Joly, N; Mbaye, MD; Poater, A; Gaillard, S; Renaud, JL or concate me.

In 2021 TETRAHEDRON published article about ASYMMETRIC TRANSFER HYDROGENATION; ENANTIOSELECTIVE TRANSFER HYDROGENATION; MEDIATED 2+2+1 CYCLOADDITIONS; TRIMETHYLAMINE N-OXIDE; METAL-DIENE COMPLEXES; REDUCTIVE AMINATION; SELECTIVE HYDROGENATION; HIGHLY EFFICIENT; ORGANIC-SYNTHESIS; CARBON-MONOXIDE in [Coufourier, Sebastien; Ndiaye, Daouda; Gaillard, Quentin Gaignard; Bettoni, Leo; Joly, Nicolas; Mbaye, Mbaye Diagne; Gaillard, Sylvain; Renaud, Jean-Luc] Normandie Univ, CNRS, UNICAEN, LCMT,ENSICAEN, 6 Blvd Marechal Juin, F-14050 Caen, France; [Ndiaye, Daouda; Mbaye, Mbaye Diagne] Univ Assane Seck Ziguinchor, BP 523, Ziguinchor, Senegal; [Joly, Nicolas; Poater, Albert] Univ Girona, Inst Quim Computac & Catalisi IQCC, Dept Quim, C M Aurelia Capmany 69, Girona 17003, Catalonia, Spain in 2021, Cited 109. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Application In Synthesis of (4-Methoxyphenyl)methanol

A Diaminocyclopentadienone iron tricarbonyl complex has been applied in chemoselective hydrogen transfer reductions. This bifunctional iron complex demonstrated a broad applicability in mild conditions in various reactions, such as reduction of aldehydes over ketones, reductive alkylation of various functionalized amines with functionalized aldehydes and reduction of alpha,beta-unsaturated ketones into the corresponding saturated ketones. A broad range of functionalized substrates has been isolated in excellent yields with this practical procedure. (C) 2021 Elsevier Ltd. All rights reserved.

Application In Synthesis of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Coufourier, S; Ndiaye, D; Gaillard, QG; Bettoni, L; Joly, N; Mbaye, MD; Poater, A; Gaillard, S; Renaud, JL or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What Kind of Chemistry Facts Are We Going to Learn About 105-13-5

HPLC of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Jing, WD; Li, H; Xiao, PW; Liu, BL; Luo, JH; Wang, RW; Qiu, SL; Zhang, ZT or concate me.

An article Ultrasmall amphiphilic zeolitic nanoreactors for the aerobic oxidation of alcohols in water WOS:000649428200001 published article about METAL-ORGANIC FRAMEWORK; SELECTIVE OXIDATION; SOLID NANOPARTICLES; CATALYZED REACTIONS; PHASE INVERSION; EMULSIONS; PARTICLES; INTERFACE; CLUSTERS; SIZE in [Jing, Wendan; Li, Hui; Liu, Bolun; Wang, Runwei; Qiu, Shilun; Zhang, Zongtao] Jilin Univ, State Key Lab Inorgan Synth & Preparat Chem, Changchun 130012, Peoples R China; [Xiao, Peiwen; Luo, Jianhui] PetroChina, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R China; [Xiao, Peiwen; Luo, Jianhui] CNPC, Key Lab Nano Chem KLNC, Beijing 100083, Peoples R China in 2021, Cited 43. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. HPLC of Formula: C8H10O2

Organic reactors in a green solvent (water) is the goal of sustainable development. Green nanoreactors with excellent amphiphilicity and catalytic activity are strongly desired. Herein, a novel amphiphilic nanoreactor Pd@amZSM-5 with ultrasmall size has been successfully synthesized via a simple one-step oil bath method, subjected to the modification-etching-modification strategy and in situ reduction of Pd2+. Ultrasmall Pd@amZSM-5 nanoreactors (60 nm) with hierarchical structures showed outstanding amphiphilicity for forming Pickering emulsions with fine uniform droplets (50 mu m). Fine droplets formed short diffusion distances, which can significantly improve the catalytic activity in biphasic reactions. Moroever, the ultrasmall Pd@amZSM-5 nanoreactors demonstrated excellent catalytic activity for the selective oxidation of alcohols in water using air as the oxidant. Alkali was not present in the reaction system. The hydrophilic aminopropyl groups on the surface of the Pd@amZSM-5 nanoreactors not only changed the affinity of the zeolite surface and provided targeting points for Pd nanoparticles but also provided an alkaline environment for the selective oxidation of alcohols. The ultrasmall Pd@amZSM-5 nanoreactors presented excellent universality for aromatic alcohols (with >90% conversion and >90% selectivity) and allylic alcohols (with 100% conversion and 100% selectivity).

HPLC of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Jing, WD; Li, H; Xiao, PW; Liu, BL; Luo, JH; Wang, RW; Qiu, SL; Zhang, ZT or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Get Up to Speed Quickly on Emerging Topics:(4-Methoxyphenyl)methanol

Category: alcohols-buliding-blocks. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Senthilkumar, S; Zhong, W; Natarajan, M; Lu, CX; Xu, BY; Liu, XM or concate me.

I found the field of Chemistry very interesting. Saw the article A green approach for aerobic oxidation of benzylic alcohols catalysed by Cu-I-Y zeolite/TEMPO in ethanol without additional additives published in 2021. Category: alcohols-buliding-blocks, Reprint Addresses Zhong, W; Liu, XM (corresponding author), Jiaxing Univ, Coll Biol Chem Sci & Engn, Jiaxing, Zhejiang, Peoples R China.. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol

An efficient and green protocol for aerobic oxidation of benzylic alcohols in ethanol using Cu-I-Y zeolite catalysts assisted by TEMPO (TEMPO = 2,2,6,6-tetramethyl-1-piperidine-N-oxyl) as the radical co-catalyst in the presence of atmospheric air under mild conditions is reported. The Cu-I-Y zeolite prepared via ion exchange between CuCl and HY zeolite was fully characterized by a variety of spectroscopic techniques including XRD, XPS, SEM, EDX and HRTEM. The incorporation of Cu(i) into the 3D-framework of the zeolite rendered the catalyst with good durability. The results of repetitive runs revealed that in the first three runs, there was hardly a decline in activity and a more substantial decrease in yield was observed afterwards, while the selectivity remained almost unchanged. The loss in activity was attributed to both the formation of CuO and the bleaching of copper into the liquid phase during the catalysis, of which the formation of CuO was believed to be the major contributor since the bleaching loss for each run was negligible (<2%). In this catalytic system, except TEMPO, no other additives were needed, either a base or a ligand, which was essential in some reported catalytic systems for the oxidation of alcohols. The aerobic oxidation proceeded under mild conditions (60 degrees C, and 18 hours) to quantitatively and selectively convert a wide range of benzylic alcohols to corresponding aldehydes, which shows great potential in developing green and environmentally benign catalysts for aerobic oxidation of alcohols. The system demonstrated excellent tolerance against electron-withdrawing groups on the phenyl ring of the alcohols and showed sensitivity to steric hindrance of the substrates, which is due to the confinement of the pores of the zeolite in which the oxidation occurred. Based on the mechanism reported in the literature for homogenous oxidation, a mechanism was analogously proposed for the aerobic oxidation of benzylic alcohols catalysed by this Cu(i)-containing zeolite catalyst. Category: alcohols-buliding-blocks. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Senthilkumar, S; Zhong, W; Natarajan, M; Lu, CX; Xu, BY; Liu, XM or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What I Wish Everyone Knew About C8H10O2

Name: (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Feng, XS; Huang, M or concate me.

Recently I am researching about ONE-POT SYNTHESIS; SELECTIVE ALKYLATION; EFFICIENT; COMPLEX; ANILINES; SUBSTITUTION; OXIDATION; AMIDES, Saw an article supported by the NSFCNational Natural Science Foundation of China (NSFC) [22002023]. Name: (4-Methoxyphenyl)methanol. Published in PERGAMON-ELSEVIER SCIENCE LTD in OXFORD ,Authors: Feng, XS; Huang, M. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol

A series of air-stable N-heterocyclic carbene (NHC) Ir(III) complexes (Ir1-6), bearing various combinations of chlorine, pyridine and NHC ligands, were assayed for the N-alkylation of amines with alcohols. It was found that Ir3, with two monodentate 1,3-bis-methyl-imidazolylidene (IMe) ligands, emerged as the most active complex. A large variety of amines and primary alcohols were efficiently converted into mono-N-alkylated amines in 53-96% yields. As a special highlight, for the challenging MeOH, selective N-monomethylation could be achieved using KOH as a base under an air atmosphere. Moreover, this catalytic system was successfully applied to the gram-scale synthesis of some valuable compounds. (C) 2021 Elsevier Ltd. All rights reserved.

Name: (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Feng, XS; Huang, M or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Chemical Research in 105-13-5

Product Details of 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Shi, ZQ; Qu, XJ; Dai, JY; Zou, HB; Zhang, ZT; Wang, RW; Qiu, SL or concate me.

Product Details of 105-13-5. In 2021 CHEM ENG J published article about METAL-ORGANIC FRAMEWORKS; SELECTIVE OXIDATION; AEROBIC OXIDATION; EFFICIENT OXIDATION; QUANTUM DOTS; CARBON DOTS; NANOPARTICLES; GOLD; DRIVEN; OXYGEN in [Shi, Zhiqiang; Qu, Xuejian; Dai, Jinyu; Zhang, Zongtao; Wang, Runwei; Qiu, Shilun] Jilin Univ, State Key Lab Inorgan Synth & Preparat Chem, Coll Chem, Changchun 130012, Peoples R China; [Zou, Houbing] Shanxi Univ, Sch Chem & Chem Engn, 92 Wucheng Rd, Taiyuan 030006, Peoples R China in 2021, Cited 54. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

Exploring catalytic processes performed under natural conditions is interesting, but there remains a great challenge in developing highly efficient catalysts for natural oxidation of alcohols. Herein, we report a chloroplast-like catalyst comprised of photoactive carbon dots (CDs), catalytically active Pt nanoparticles, and amphiphilic nanotubes. Under simulated and real natural reaction conditions, our catalysts exhibited remarkable activity and long-term reusability for the oxidation of various alcohols, significantly outperforming that of other counterpart catalysts and reported thermal/photocatalytic systems. It was demonstrated that when the carbon dots and the amphiphilic nanotubes respectively played a role in the light-harvesting and the substrate transport the Pt/CDs heterointerface acted as the active center for the matter conversion. Such an elaborate cooperation, an advanced process in the photosynthesis of plant, contributed to the excellent catalytic performance. This contribution provides a new design concept for artificial photocatalysts, which is very promising for developing sustainable catalytic processes.

Product Details of 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Shi, ZQ; Qu, XJ; Dai, JY; Zou, HB; Zhang, ZT; Wang, RW; Qiu, SL or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Extracurricular laboratory: Synthetic route of (4-Methoxyphenyl)methanol

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Remy, PA; Peres, C; Dugay, J; Corbi, E; David, N; Vial, JM or concate me.. Quality Control of (4-Methoxyphenyl)methanol

Authors Remy, PA; Peres, C; Dugay, J; Corbi, E; David, N; Vial, JM in WILEY published article about 2-DIMENSIONAL GAS-CHROMATOGRAPHY; SOLID-PHASE DISPERSION; GC-MS QUANTIFICATION; SUSPECTED ALLERGENS; QUANTITATIVE-ANALYSIS; VOLATILE COMPOUNDS; DYNAMIC HEADSPACE; SCENTED TOYS; VALIDATION; PRODUCTS in [Remy, Pierre-Alain; Peres, Christophe; Corbi, Elise; David, Nathalie] Chanel, Lab Rech & Anal, 135 Ave Charles de Gaulle, F-92200 Neuilly Sur Seine, France; [Remy, Pierre-Alain; Dugay, Jose; Vial, Jerome] PSL Res Univ, ESPCI Paris, LSABM, CBI,CNRS,UMR 8231, Paris, France in 2021, Cited 53. Quality Control of (4-Methoxyphenyl)methanol. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Two high-resolution mass spectrometers (HRMS) with different analyzer technology, Orbitrap and hybrid quadrupole time-of-flight (QTOF), were compared with a low-resolution mass spectrometer, quadrupole, to analyse a set of 35 difficult allergens. These difficult allergens are commonly coeluted fragrance allergens with matrix compounds, using standard gas chromatography-mass spectrometer conditions, from the extended list of the Scientific Committee on Consumer Safety (SCCS). Although the fundamental role of chromatographic separation has been demonstrated many times, the aim of this work is to demonstrate the benefits of high-resolution. The added value of high-resolution was illustrated in both a qualitative and a quantitative way. For qualitative aspect, the high resolution extracted ion signals of these two detectors were compared with the low-resolution extracted ion signals. About 50% of the coeluted cases observed with the low-resolution detector are easily resolved by the two high-resolution detectors. For the quantitative aspect, an accuracy profile methodology and a performance metric were used to propose an overall evaluation. The Orbitrap mass spectrometer demonstrated a better overall performance, while the QTOF presented similar or even lower quantification performances than the quadrupole on the set of analysed fragrances.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Remy, PA; Peres, C; Dugay, J; Corbi, E; David, N; Vial, JM or concate me.. Quality Control of (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

The Shocking Revelation of 105-13-5

Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Bains, AK; Yadav, A; Adhikari, D or concate me.

Authors Bains, AK; Yadav, A; Adhikari, D in AMER CHEMICAL SOC published article about in [Bains, Amreen K.; Adhikari, Debashis] Indian Inst Sci Educ & Res IISER Mohali, Dept Chem Sci, Ajitgarh 140306, Punjab, India; [Yadav, Ankit] Indian Inst Sci Educ & Res IISER Mohali, Dept Earth & Environm Sci, Ajitgarh 140306, Punjab, India in 2021, Cited 35. Formula: C8H10O2. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Herein, we report a combination of pyrenedione (PD) and KO’Bu to achieve facile alcohol dehydrogenation under visible-light excitation, where aerobic oxygen is utilized as the terminal oxidant. The resulting carbonyl compound can be easily converted to vinyl nitriles in a single-pot reaction, at 60 degrees C in 6-8 h. This environmentally benign, organocatalytic approach has distinct advantages over transition-metal-catalyzed a-olefination of nitriles, which often operate at a significantly higher temperature for an extended reaction time.

Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Bains, AK; Yadav, A; Adhikari, D or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Why Are Children Getting Addicted To 105-13-5

Category: alcohols-buliding-blocks. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Feng, XS; Huang, M or concate me.

Feng, XS; Huang, M in [Feng, Xinshu; Huang, Ming] Guangdong Pharmaceut Univ, Sch Clin Pharm, Guangzhou 510006, Peoples R China published Effect of the ancillary ligand in N-heterocyclic carbene iridium(III) catalyzed N-alkylation of amines with alcohols in 2021, Cited 40. Category: alcohols-buliding-blocks. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

A series of air-stable N-heterocyclic carbene (NHC) Ir(III) complexes (Ir1-6), bearing various combinations of chlorine, pyridine and NHC ligands, were assayed for the N-alkylation of amines with alcohols. It was found that Ir3, with two monodentate 1,3-bis-methyl-imidazolylidene (IMe) ligands, emerged as the most active complex. A large variety of amines and primary alcohols were efficiently converted into mono-N-alkylated amines in 53-96% yields. As a special highlight, for the challenging MeOH, selective N-monomethylation could be achieved using KOH as a base under an air atmosphere. Moreover, this catalytic system was successfully applied to the gram-scale synthesis of some valuable compounds. (C) 2021 Elsevier Ltd. All rights reserved.

Category: alcohols-buliding-blocks. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Feng, XS; Huang, M or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Chemical Properties and Facts of (4-Methoxyphenyl)methanol

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Dong, JY; Chen, XL; Ji, FY; Liu, LX; Su, LB; Mo, M; Tang, JS; Zhou, YB or concate me.. Name: (4-Methoxyphenyl)methanol

Dong, JY; Chen, XL; Ji, FY; Liu, LX; Su, LB; Mo, M; Tang, JS; Zhou, YB in [Dong, Jianyu; Mo, Min; Tang, Jian-Sheng] Hunan First Normal Univ, Dept Educ Sci, Changsha 410205, Peoples R China; [Dong, Jianyu; Chen, Xiuling; Ji, Fangyan; Liu, Lixin; Su, Lebin; Zhou, Yongbo] Hunan Univ, Coll Chem & Chem Engn, Changsha, Peoples R China; [Chen, Xiuling] Hubei Univ Sci & Technol, Nonpower Nucl Technol Collaborat Innovat Ctr, Sch Nucl Technol & Chem & Biol, Xianning, Peoples R China published Copper-mediated simple and direct aerobic oxidative esterification of arylacetonitriles with alcohols/phenols in 2021, Cited 79. Name: (4-Methoxyphenyl)methanol. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

A simple and direct aerobic oxidative esterification reaction of arylacetonitriles with alcohols/phenols is achieved in the presence of a copper salt and molecular oxygen, which produces a broad range of aryl carboxylic acid esters in good to high yields. Copper salt plays multiple roles in the transformation, which allows the oxygenation of C-H bond, cleavage of inert C-C bond, and formation of C-O bond in one pot without the assistance of any of the acids, bases, ligands, and so on. The reaction provides a simple, direct, and efficient protocol towards functionalized esters, especially aryl benzoates, from readily available starting materials.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Dong, JY; Chen, XL; Ji, FY; Liu, LX; Su, LB; Mo, M; Tang, JS; Zhou, YB or concate me.. Name: (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts