Machine Learning in Chemistry about 105-13-5

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wei, DY; Yang, P; Yu, CM; Zhao, FK; Wang, YL; Peng, ZH or concate me.. Quality Control of (4-Methoxyphenyl)methanol

Recommanded Product: (4-Methoxyphenyl)methanol. Authors Wei, DY; Yang, P; Yu, CM; Zhao, FK; Wang, YL; Peng, ZH in AMER CHEMICAL SOC published article about in [Wei, Dongyue; Yang, Peng; Yu, Chuanman; Zhao, Fengkai; Wang, Yilei; Peng, Zhihua] China Univ Petr East China, Coll Sci, Dept Chem, Qingdao 266580, Shandong, Peoples R China in 2021, Cited 51. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

A manganese-catalyzed N-alkylation reaction of amines with alcohols via hydrogen autotransfer strategy has been demonstrated. The developed practical catalytic system including an inexpensive, nontoxic, commercially available MnCl2 or MnBr(CO) s as the metal salt and triphenylphosphine as a ligand provides access to diverse aromatic, heteroaromatic, and aliphatic secondary amines in moderate-to-high yields. In addition, this operationally simple protocol is scalable to the gram level and suitable for synthesizing heterocycles such as indole and resveratrol-derived amines known to be active for Alzheimer’s disease.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wei, DY; Yang, P; Yu, CM; Zhao, FK; Wang, YL; Peng, ZH or concate me.. Quality Control of (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What I Wish Everyone Knew About C8H10O2

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Tsai, WL; Nash, MS; Rosenbaum, DJ; Prince, SE; D’Aloisio, AA; Neale, AC; Sandler, DP; Buckley, TJ; Jackson, LE or concate me.. Name: (4-Methoxyphenyl)methanol

An article Types and spatial contexts of neighborhood greenery matter in associations with weight status in women across 28 US communities WOS:000663724900007 published article about ECOSYSTEM SERVICES; PHYSICAL-ACTIVITY; RESIDENTIAL GREENNESS; OBESITY; SPACE; WALKING; HEALTH; COHORT; CLASSIFICATION; ACCESSIBILITY in [Tsai, Wei-Lun; Rosenbaum, Daniel J.; Prince, Steven E.; Neale, Anne C.; Buckley, Timothy J.; Jackson, Laura E.] US EPA, Off Res & Dev, Res Triangle Pk, NC 27711 USA; [Nash, Maliha S.] US EPA, Off Res & Dev, Newport, OR USA; [D’Aloisio, Aimee A.] Social & Sci Syst, Durham, NC USA; [Sandler, Dale P.] NIEHS, POB 12233, Res Triangle Pk, NC 27709 USA in 2021, Cited 72. Application In Synthesis of (4-Methoxyphenyl)methanol. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Excess body weight is a risk factor for many chronic diseases. Studies have identified neighborhood greenery as supportive of healthy weight. However, few have considered plausible effect pathways for ecosystem services (e. g., heat mitigation, landscape aesthetics, and venues for physical activities) or potential variations by climate. This study examined associations between weight status and neighborhood greenery that capture ecosystem services most relevant to weight status across 28 U.S. communities. Weight status was defined by body mass index (BMI) reported for 6591 women from the U.S. Sister Study cohort. Measures of greenery within street and circular areas at 500 m and 2000 m buffer distances from homes were derived for each participant using 1 m land cover data. Street area was defined as a 25 m-wide zone on both sides of street centerlines multiplied by the buffer distances, and circular area was the area of the circle centered on a home within each of the buffer distances. Measures of street greenery characterized the pedestrian environment to capture physically and visually accessible greenery for shade and aesthetics. Circular greenery was generated for comparison. Greenery types of tree and herbaceous cover were quantified separately, and a combined measure of tree and herbaceous cover (i.e., aggregate greenery) was also included. Mixed models accounting for the clustering at the community level were applied to evaluate the associations between neighborhood greenery and the odds of being overweight or obese (BMI > 25) with adjustment for covariates selected using gradient boosted regression trees. Analyses were stratified by climate zone (arid, continental, and temperate). Tree cover was consistently associated with decreased odds of being overweight or obese. For example, the adjusted odds ratio [AOR] was 0.92, 95% Confidence Interval [CI]: 0.88-0.96, given a 10% increase in street tree cover at the 2000 m buffer across the 28 U.S. communities. These associations held across climate zones, with the lowest AOR in the arid climate (AOR: 0.74, 95% CI: 0.54-1.01). In contrast, associations with herbaceous cover varied by climate zone. For the arid climate, a 10% increase in street herbaceous cover at the 2000 m buffer was associated with lower odds of being overweight or obese (AOR: 0.75, 95% CI: 0.55-1.03), whereas the association was reversed for the temperate climate, the odds increased (AOR: 1.19, 95% CI: 1.05-1.35). Associations between greenery and overweight/obesity varied by type and spatial context of greenery, and climate. Our findings add to a growing body of evidence that greenery design in urban planning can support public health. These findings also justify further defining the mechanism that underlies the observed associations.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Tsai, WL; Nash, MS; Rosenbaum, DJ; Prince, SE; D’Aloisio, AA; Neale, AC; Sandler, DP; Buckley, TJ; Jackson, LE or concate me.. Name: (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Machine Learning in Chemistry about C8H10O2

HPLC of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Chiaretti, A; Pittiruti, M; Sassudelli, G; Conti, G; Rossi, M; Pulitano, SM; Mancino, A; Pusateri, A; Gatto, A; Tosi, F or concate me.

Chiaretti, A; Pittiruti, M; Sassudelli, G; Conti, G; Rossi, M; Pulitano, SM; Mancino, A; Pusateri, A; Gatto, A; Tosi, F in [Chiaretti, Antonio; Sassudelli, Giovanni; Gatto, Antonio] Fdn Policlin Univ Agostino Gemelli, Dept Pediat, IRCCS, Rome, Italy; [Pittiruti, Mauro] Fdn Policlin Univ Agostino Gemelli, Dept Surg, IRCCS, Rome, Italy; [Conti, Giorgio; Pulitano, Silvia Maria; Mancino, Aldo] Fdn Policlin Univ Agostino Gemelli, Pediat Intens Care Unit, IRCCS, Rome, Italy; [Rossi, Marco; Pusateri, Angela; Tosi, Federica] Fdn Policlin Univ Agostino Gemelli, Dept Anesthesia & Pain Therapy, IRCCS, Rome, Italy published Comparison between sedation room and operating room in central venous catheter positioning in children in 2021, Cited 25. HPLC of Formula: C8H10O2. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

Background: Placement of central venous access devices is a clinical procedure associated with some risk of adverse events and with a relevant cost. Careful choice of the device, appropriate insertion technique, and proper management of the device are well-known strategies commonly adopted to achieve an optimal clinical result. However, the environment where the procedure takes place may have an impact on the overall outcome in terms of safety and cost-effectiveness. Methods: We carried out a retrospective analysis on pediatric patients scheduled for a major neurosurgical operation, who required a central venous access device in the perioperative period. We divided the patients in two groups: in group A the central venous access device was inserted in the operating room, while in group B the central venous access device was inserted in the sedation room of our Pediatric Intensive Care Unit. We compared the two groups in terms of safety and cost-effectiveness. Results: We analyzed 47 central venous access devices in 42 children. There were no insertion-related complications. Only one catheter-related bloodstream infection was recorded, in group A. However, the costs related to central venous access device insertion were quite different: euro330-euro540 in group A versus euro105-euro135 in group B. Conclusion: In the pediatric patient candidate to a major neurosurgical operation, preoperative insertion of the central venous access device in the sedation room rather than in the operating room is less expensive and equally safe.

HPLC of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Chiaretti, A; Pittiruti, M; Sassudelli, G; Conti, G; Rossi, M; Pulitano, SM; Mancino, A; Pusateri, A; Gatto, A; Tosi, F or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Extracurricular laboratory: Synthetic route of C8H10O2

Quality Control of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Peng, D; Shan, DF; Dai, CC; Li, J; Wang, ZF; Huang, ZY; Peng, R; Zhao, P; Ma, XZ or concate me.

Quality Control of (4-Methoxyphenyl)methanol. Recently I am researching about GROWTH-FACTOR RECEPTOR; 1ST-LINE TREATMENT; BRAIN METASTASES; OPEN-LABEL; PHASE-II; RESISTANCE; CHEMOTHERAPY; GEFITINIB; ERLOTINIB; MULTICENTER, Saw an article supported by the . Published in DOVE MEDICAL PRESS LTD in ALBANY ,Authors: Peng, D; Shan, DF; Dai, CC; Li, J; Wang, ZF; Huang, ZY; Peng, R; Zhao, P; Ma, XZ. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol

Purpose: As a third-generation EGFR TKI has been taken orally, Osimertinib effectively inhibits mutant EGFR, including T790M EGFR resistance mutations. Here, we examined real-world efficacy and tolerability of Osimertinib among Chinese patients with advanced EGFR T790M-mutant NSCLC. Patients and Methods: A total of 106 advanced NSCLC patients who were taking Osimertinib following disease progression after EGFR-TKIs or other treatments were retro-spectively recruited in this study. The PFS and OS after Osimertinib treatment were analyzed as the primary endpoints. Results: Osimertinib was used as a second line and >= 3rd line treatment in 22.6% and 77.4% of the patients, respectively. DCR and ORR were 93.4% and 57.5%, respectively. Median PFS was 12.4 12 (95% CI, 10.5-13.5) months. The PFS was 11 (8.0, 14.0) and 12 (10.3,13.7) months (p = 0.373), in patients with and without CNS metastasis, respectively. PFS in 2nd and >= 3rd line treatment was 11 (9.0, 13.0) and 12.4 12 (8.9, 15.1) months (p = 0.799), respectively. In patients with EGFR exon 19 deletion and exon 21 L858 mutation, the median PFS was 11 (9.2, 12.8) and 12 (9.2, 14.8) months, respectively (p = 0.833). Median PFS in the monotherapy group and combined anti-angiogenesis group was 11 (9.9,12.1) and 14 (11.2,16.8) months, respectively. Median OS after Osimertinib initiation was 27 (19.6, 34.4) months: 15 (6.9, 23.1) and 27 (22, 32) months in patients with and without CNS metastasis (p=0.027), 27 (20.3,33.7) months and (undefined) as second line or >= 3rd line of treatment (p = 0.421), respectively. In patients with exon 19 deletion, the median OS was not reached, and in patients with exon 21 L858 mutations, the median OS was 23 (19.1,29.9) months (p=0.027). Median OS in the monotherapy group was 27 (21.7,32.3) months, and in combined anti-angiogenesis group was not reached (p=0.68). Conclusion: Osimertinib can effectively treat advanced NSCLC with T790M mutations independently of previous treatment lines.

Quality Control of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Peng, D; Shan, DF; Dai, CC; Li, J; Wang, ZF; Huang, ZY; Peng, R; Zhao, P; Ma, XZ or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

The Best Chemistry compound:(4-Methoxyphenyl)methanol

COA of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Dong, JY; Chen, XL; Ji, FY; Liu, LX; Su, LB; Mo, M; Tang, JS; Zhou, YB or concate me.

In 2021 APPL ORGANOMET CHEM published article about C-H BONDS; CATALYZED ESTERIFICATION; COUPLING REACTIONS; CARBONYLATION; ALDEHYDES; CLEAVAGE; ESTERS; AMINATION; FUNCTIONALIZATION; ACTIVATION in [Dong, Jianyu; Mo, Min; Tang, Jian-Sheng] Hunan First Normal Univ, Dept Educ Sci, Changsha 410205, Peoples R China; [Dong, Jianyu; Chen, Xiuling; Ji, Fangyan; Liu, Lixin; Su, Lebin; Zhou, Yongbo] Hunan Univ, Coll Chem & Chem Engn, Changsha, Peoples R China; [Chen, Xiuling] Hubei Univ Sci & Technol, Nonpower Nucl Technol Collaborat Innovat Ctr, Sch Nucl Technol & Chem & Biol, Xianning, Peoples R China in 2021, Cited 79. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. COA of Formula: C8H10O2

A simple and direct aerobic oxidative esterification reaction of arylacetonitriles with alcohols/phenols is achieved in the presence of a copper salt and molecular oxygen, which produces a broad range of aryl carboxylic acid esters in good to high yields. Copper salt plays multiple roles in the transformation, which allows the oxygenation of C-H bond, cleavage of inert C-C bond, and formation of C-O bond in one pot without the assistance of any of the acids, bases, ligands, and so on. The reaction provides a simple, direct, and efficient protocol towards functionalized esters, especially aryl benzoates, from readily available starting materials.

COA of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Dong, JY; Chen, XL; Ji, FY; Liu, LX; Su, LB; Mo, M; Tang, JS; Zhou, YB or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

The Best Chemistry compound:(4-Methoxyphenyl)methanol

COA of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Epifanov, M; Mo, JY; Dubois, R; Yu, H; Sammis, GM or concate me.

COA of Formula: C8H10O2. Authors Epifanov, M; Mo, JY; Dubois, R; Yu, H; Sammis, GM in AMER CHEMICAL SOC published article about in [Epifanov, Maxim; Mo, Jia Yi; Dubois, Rudy; Yu, Hao; Sammis, Glenn M.] Univ British Columbia, Dept Chem, Columbia, BC V6T 1Z1, Canada in 2021, Cited 48. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Sulfuryl fluoride is a valuable reagent for the one-pot activation and derivatization of aliphatic alcohols, but the highly reactive alkyl fluorosulfate intermediates limit both the types of reactions that can be accessed as well as the scope. Herein, we report the SO2F2-mediated alcohol substitution and deoxygenation method that relies on the conversion of fluorosulfates to alkyl halide intermediates. This strategy allows the expansion of SO2F2-mediated one-pot processes to include radical reactions, where the alkyl halides can also be exploited in the one-pot deoxygenation of primary alcohols under mild conditions (52-95% yield). This strategy can also enhance the scope of substitutions to nucleophiles that are previously incompatible with one-pot SO2F2-mediated alcohol activation and enables substitution of primary and secondary alcohols in 54-95% yield. Chiral secondary alcohols undergo a highly stereospecific (90-98% ee) double nucleophilic displacement with an overall retention of configuration.

COA of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Epifanov, M; Mo, JY; Dubois, R; Yu, H; Sammis, GM or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Extended knowledge of C8H10O2

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kuriyama, Y; Sasano, Y; Hoshino, Y; Uesugi, S; Yamaichi, A; Iwabuchi, Y or concate me.. Category: alcohols-buliding-blocks

Kuriyama, Y; Sasano, Y; Hoshino, Y; Uesugi, S; Yamaichi, A; Iwabuchi, Y in [Kuriyama, Yuse; Sasano, Yusuke; Hoshino, Yoshihiko; Uesugi, Shun-ichiro; Yamaichi, Aoto; Iwabuchi, Yoshiharu] Tohoku Univ, Dept Organ Chem, Grad Sch Pharmaceut Sci, Aoba Ku, 6-3 Aoba, Sendai, Miyagi 9808578, Japan published Highly Regioselective 5-endo-tet Cyclization of 3,4-Epoxy Amines into 3-Hydroxypyrrolidines Catalyzed by La(OTf)(3) in 2021, Cited 38. Category: alcohols-buliding-blocks. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

Highly regioselective intramolecular aminolysis of 3,4-epoxy amines has been achieved. Key features of this reaction are (1) chemoselective activation of epoxides in the presence of unprotected aliphatic amines in the same molecules by a La(OTf)(3) catalyst and (2) excellent regioselectivity for anti-Baldwin 5-endo-tet cyclization. This reaction affords 3-hydroxy-2-alkylpyrrolidines stereospecifically in high yields. DFT calculations revealed that the regioselectivity might be attributed to distortion energies of epoxy amine substrates. The use of this reaction was demonstrated by the first enantioselective synthesis of an antispasmodic agent prifinium bromide.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kuriyama, Y; Sasano, Y; Hoshino, Y; Uesugi, S; Yamaichi, A; Iwabuchi, Y or concate me.. Category: alcohols-buliding-blocks

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Brief introduction of (4-Methoxyphenyl)methanol

Recommanded Product: (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Shahriari, M; Sedigh, MA; Mahdavian, Y; Mahdigholizad, S; Pirhayati, M; Karmakar, B; Veisi, H or concate me.

I found the field of Biochemistry & Molecular Biology; Chemistry; Polymer Science very interesting. Saw the article In situ supported Pd NPs on biodegradable chitosan/agarose modified magnetic nanoparticles as an effective catalyst for the ultrasound assisted oxidation of alcohols and activities against human breast cancer published in 2021. Recommanded Product: (4-Methoxyphenyl)methanol, Reprint Addresses Karmakar, B (corresponding author), Gobardanga Hindu Coll, Dept Chem, Gobardanga, India.; Veisi, H (corresponding author), Payame Noor Univ, Dept Chem, Tehran, Iran.. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol

In this content, a green approach for the ultrasound promoted in situ immobilization of Pd NPs over biodegradable chitosan/agarose modified ferrite NP (Fe3O4@CS-Agarose/Pd) is developed. The structural and physicochemical features of the material were estimated using advanced analytical techniques like FT-IR, ICP-OES, FESEM, EDS, XRD, TEM and VSM. The magnetic material was catalytically explored in the oxidation of alcohols under ultrasonic waves. Sonication had a significant role in enhancing the catalytic performance in the alcohol’s oxidation as compared to conventional heating. The heterogeneous nanocatalyst was efficiently recycled up to 10 times with nominal loss in catalytic activity. Towards the biological applications, the Fe3O4@CS-Agarose/Pd nanocomposite showed high antioxidant activities against DPPH free radicals, comparable to standard butylated hydroxytoluene (BHT). In addition, it exhibited excellent cytotoxicity in terms of % cell viability against breast adenocarcinoma (MCF7), breast carcinoma (Hs 578Bst), infiltrating ductal cell carcinoma (Hs 319.T), and metastatic carcinoma (MDA-MB-453) cell lines. The best anti-breast cancer potential of the nanocomposite was observed in Hs 319.T cell line. (C) 2021 Published by Elsevier B.V.

Recommanded Product: (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Shahriari, M; Sedigh, MA; Mahdavian, Y; Mahdigholizad, S; Pirhayati, M; Karmakar, B; Veisi, H or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What I Wish Everyone Knew About (4-Methoxyphenyl)methanol

HPLC of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Mehrjoyan, F; Afshari, M or concate me.

Mehrjoyan, F; Afshari, M in [Mehrjoyan, Forouzan] Islamic Azad Univ, Dept Chem, Ahvaz Branch, Ahvaz, Iran; [Afshari, Mozhgan] Islamic Azad Univ, Dept Chem, Shoushtar Branch, Shoushtar 6451741117, Iran published Nano NiFe 2 O 4 supported phenanthroline Cu(II) complex as a retrievable catalyst for selective and environmentally friendly oxidation of benzylic alcohols in 2021, Cited 34. HPLC of Formula: C8H10O2. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

A new magnetically recoverable catalyst consisting of phenanthroline Cu(II) complex supported on nickel ferrite nanoparticles was prepared. The synthesized catalyst was characterized by Fourier transform in-frared spectroscopy, X-ray diffraction, transmission and scanning electron microscopes, thermogravimetry, energy dispersive X-ray spectroscopy, vibrating sample magnetometry and inductively coupled plasma. Supported copper complex used for solvent free oxidation of 1-phenyl ethanol as a model. Influence of the reaction parameters (kind of oxidant, amount of the catalyst, reaction time, solvent and reaction temperature) were studied. Because of the immobilized complex has been shown to be an efficient het-erogeneous catalyst for the selective oxidation of 1-phenyl ethanol to acetophenone (94% yield) by hydro-gen peroxide so this green approach extended to other benzylic alcohols. The catalyst had been reused 10 times with no significant loss of catalytic activity. SEM, EDX, XRD, and ICP analysis of reused catalyst indicated that the catalyst was stable after the reaction. (c) 2021 Published by Elsevier B.V.

HPLC of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Mehrjoyan, F; Afshari, M or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

You Should Know Something about (4-Methoxyphenyl)methanol

SDS of cas: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wu, JJ; Darcel, C or concate me.

Wu, JJ; Darcel, C in [Wu, Jiajun; Darcel, Christophe] Univ Rennes, CNRS ISCR, Inst Sci Chim Rennes, UMR 6226, F-35000 Rennes, France published Iron-Catalyzed Hydrogen Transfer Reduction of Nitroarenes with Alcohols: Synthesis of Imines and Aza Heterocycles in 2021, Cited 137. SDS of cas: 105-13-5. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

A straightforward and selective reduction of nitroarenes with various alcohols was efficiently developed using an iron catalyst via a hydrogen transfer methodology. This protocol led specifically to imines in 30-91% yields, with a good functional group tolerance. Noticeably, starting from o-nitroaniline derivatives, in the presence of alcohols, benzimidazoles can be obtained in 64-72% yields when the reaction was performed with an additional oxidant, DDQ, and quinoxalines were prepared from 1,2-diols in 28-96% yields. This methodology, unprecedented at iron for imines, also provides a sustainable alternative for the preparation of quinoxalines and benzimidazoles.

SDS of cas: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wu, JJ; Darcel, C or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts