Final Thoughts on Chemistry for (4-Methoxyphenyl)methanol

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Tabaru, K; Nakatsuji, M; Itoh, S; Suzuki, T; Obora, Y or concate me.. Application In Synthesis of (4-Methoxyphenyl)methanol

Application In Synthesis of (4-Methoxyphenyl)methanol. Authors Tabaru, K; Nakatsuji, M; Itoh, S; Suzuki, T; Obora, Y in ROYAL SOC CHEMISTRY published article about in [Tabaru, Kazuki; Nakatsuji, Masato; Itoh, Satoshi; Obora, Yasushi] Kansai Univ, Fac Chem Mat & Bioengn, Dept Chem & Mat Engn, Suita, Osaka 5648680, Japan; [Suzuki, Takeyuki] Osaka Univ, Inst Sci & Ind Res ISIR, Comprehens Anal Ctr, 8-1 Mihogaoka, Osaka 5670057, Japan in 2021, Cited 16. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

We report N,N-dimethylformamide-stabilised Pd nanoparticle (Pd NP)-catalysed transfer vinylation of alcohols from vinyl ether. Pd NPs combined with bathophenanthroline exhibited high catalytic activity. This reaction proceeded with low catalyst loading and the catalyst remained effective even after many rounds of recycling. The observation of the catalyst using transmission electron microscopy and dynamic light scattering implied no deleterious aggregation of Pd NPs.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Tabaru, K; Nakatsuji, M; Itoh, S; Suzuki, T; Obora, Y or concate me.. Application In Synthesis of (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

The important role of (4-Methoxyphenyl)methanol

Product Details of 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Li, YT; Sun, S; Cheng, J; Yu, JT or concate me.

Authors Li, YT; Sun, S; Cheng, J; Yu, JT in ROYAL SOC CHEMISTRY published article about ONE-POT SYNTHESIS; HOMOPHTHALIC ANHYDRIDE; 3-COMPONENT REACTION; RADICAL CYCLIZATION; TANDEM CATALYSIS; BOND; FUNCTIONALIZATION; BENZAMIDES; ACIDS; HYDROXYALKYLATION in [Li, Yiting; Sun, Song; Cheng, Jiang; Yu, Jin-Tao] Changzhou Univ, Sch Petrochem Engn, Jiangsu Key Lab Adv Catalyt Mat & Technol, Changzhou 213164, Peoples R China in 2020, Cited 56. Product Details of 105-13-5. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

A radical-initiated cascade addition and cyclization of N-allylbenzamides with simple ethers to construct ether-substituted dihydroisoquinolinones was performed in the presence of CuI. The cleavage of the sp(3) C-H bond in ether and the sp(2) C-H bond in phenyl was involved in this reaction. Moreover, the arylalkylation of N-allylanilines was also realized under similar reaction conditions, providing ether-functionalized indolines in good to moderate yields.

Product Details of 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Li, YT; Sun, S; Cheng, J; Yu, JT or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Get Up to Speed Quickly on Emerging Topics:105-13-5

COA of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Venugopala, KN; Deb, PK; Pillay, M; Chopra, D; Chandrashekharappa, S; Morsy, MA; Aldhubiab, BE; Attimarad, M; Nair, AB; Sreeharsha, N; Kandeel, M; Venugopala, R; Mohanlall, V or concate me.

In 2021 CURR TOP MED CHEM published article about BINDING MODE ANALYSIS; DIHYDROPYRIDINE DERIVATIVES; ANTIMOSQUITO PROPERTIES; MULTIDRUG-RESISTANT; LARVICIDAL ACTIVITY; INHA INHIBITORS; DESIGN; 1,4-DIHYDROPYRIDINES; POLYMORPHISM; DISCOVERY in [Venugopala, Katharigatta N.; Morsy, Mohamed A.; Aldhubiab, Bandar E.; Attimarad, Mahesh; Nair, Anroop B.; Sreeharsha, Nagaraja] King Faisal Univ, Coll Clin Pharm, Dept Pharmaceut Sci, Al Hasa 31982, Saudi Arabia; [Venugopala, Katharigatta N.; Mohanlall, Viresh] Durban Univ Technol, Dept Biotechnol & Food Technol, ZA-4001 Durban, South Africa; [Deb, Pran Kishore] Philadelphia Univ, Fac Pharm, Dept Pharmaceut Sci, Amman 19392, Jordan; [Pillay, Melendhran] Inkosi Albert Luthuli Cent Hosp, Dept Microbiol, Natl Hlth Lab Serv, KZN Acad Complex, ZA-4001 Durban, South Africa; [Chopra, Deepak] Indian Inst Sci Educ & Res Bhopal, Dept Chem, Bhopal By Pass Rd, Bhopal 462066, Madhya Pradesh, India; [Chandrashekharappa, Sandeep] GKVK, Inst Stem Cell Biol & Regenerat Med, TIFR, NCBS, Bangalore 560065, Karnataka, India; [Morsy, Mohamed A.] Menia Univ, Fac Med, Dept Pharmacol, El Minia 61511, Egypt; [Sreeharsha, Nagaraja] Vidya Siri Coll Pharm, Dept Pharmaceut, Off Sarjapura Rd, Bengaluru 560035, India; [Kandeel, Mahmoud] King Faisal Univ, Coll Vet Medi Cine, Dept Biomed Sci, Al Hasa 31982, Saudi Arabia; [Kandeel, Mahmoud] Kafrelsheikh Univ, Fac Vet Med, Dept Pharmacol, Kafrelsheikh 33516, Egypt; [Venugopala, Rashmi] Univ KwaZulu Natal, Dept Publ Hlth Med, Howard Coll Campus, ZA-4001 Durban, South Africa in 2021, Cited 93. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. COA of Formula: C8H10O2

Background: Tuberculosis remains one of the most deadly infectious diseases worldwide due to the emergence of multi-drug resistance (MDR) and extensively drug resistance (XDR) strains of Mycobacterium tuberculosis (MTB). Aims: Currently, available drugs are getting resistant and toxic. Hence, there is an urgent need for the development of potent molecules to treat tuberculosis. Materials and Methods: Herein, the screening of a total of eight symmetrical 1,4-dihydropyridine (1,4-DHP) derivatives (4a-4h) was carried out for whole-cell anti-TB activity against the susceptible H37Rv and MDR strains of MTB. Results and Discussion: Most of the compounds exhibited moderate to excellent activity against the susceptible H37Rv. Moreover, the most promising compound 4f (against H37Rv) having para-trifluoromethyl phenyl group at 4-position and bis para-methoxy benzyl ester group at 3- and 5-positions of 1,4- dihydropyridine pharmacophore, exhibited no toxicity, but demonstrated weak activity against MTB strains resistant to isoniazid and rifampicin. In light of the inhibitory profile of the title compounds, enoyl-acyl carrier protein reductase (InhA) appeared to be the appropriate molecular target. A docking study of these derivatives against InhA receptor revealed favorable binding interactions. Further, in silico predicted ADME properties of these compounds 4a-4h were found to be in the acceptable ranges, including satisfactory Lipinski’s rule of five, thereby indicating their potential as drug-like molecules. Conclusion: In particular, the 1,4-DHP derivative 4f can be considered an attractive lead molecule for further exploration and development of more potent anti-TB agents as InhA inhibitors.

COA of Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Venugopala, KN; Deb, PK; Pillay, M; Chopra, D; Chandrashekharappa, S; Morsy, MA; Aldhubiab, BE; Attimarad, M; Nair, AB; Sreeharsha, N; Kandeel, M; Venugopala, R; Mohanlall, V or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Extended knowledge of (4-Methoxyphenyl)methanol

Quality Control of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Jin, B; Wang, JG; Xu, FX; Li, DF; Men, Y or concate me.

Quality Control of (4-Methoxyphenyl)methanol. Authors Jin, B; Wang, JG; Xu, FX; Li, DF; Men, Y in ELSEVIER published article about in [Jin, Bei; Wang, Jinguo; Xu, Fengxia; Li, Dianfeng; Men, Yong] Shanghai Univ Engn Sci, Sch Chem & Chem Engn, Shanghai 201620, Peoples R China in 2021, Cited 59. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Selective conversion of biomass-derived alcohols into carbonyl compounds via visible-light photocatalysis is realized over hierarchical hollow WO3 microspheres with tailored surface oxygen vacancies, which presents the remarkably boosted photoactivity in terms of selectivity and activity, intrinsically attributing to the strong synergetic effect of hierarchical spherical cavity and surface oxygen vacancies simultaneously. The hierarchical spherical cavity, substantially constructed by the self-interconnected nanosheets, enhances the light-harvesting ability via multiple light reflections not only in spherical cavity but also among the self-interconnected nanosheets. Surface oxygen vacancies favor the energy band gap narrowing via forming a miniband just below the conduction band and then extend the photoresponse region, further boosting the light-harvesting ability. Importantly, surface oxygen vacancies function as the electron sinks to capture photoelectrons and thus restrict their recombination probability with holes, finally improving the photoelectron-hole separation efficiency. Meanwhile, this photocatalyst presents excellent reusability, showing its promising potential in practical applications. This work sheds light on a new application of hierarchical WO3 microspheres with tailored surface oxygen vacancies and its strong synergetic effect of hierarchical structures and surface oxygen vacancies on photocatalytic performance, delivering new insights for rationally designing highly active photocatalysts applied in future green and sustainable organic transformation reactions.

Quality Control of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Jin, B; Wang, JG; Xu, FX; Li, DF; Men, Y or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Archives for Chemistry Experiments of 105-13-5

Product Details of 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kumar, A; Kurbah, SD; Syiemlieh, I; Dhanpat, SA; Borthakur, R; Lal, RA or concate me.

Authors Kumar, A; Kurbah, SD; Syiemlieh, I; Dhanpat, SA; Borthakur, R; Lal, RA in ELSEVIER SCIENCE SA published article about CRYSTAL-STRUCTURES; DIOXIDOVANADIUM(V) COMPLEXES; ALKALI-METAL; OXIDOVANADIUM(IV) COMPLEXES; STRUCTURAL-CHARACTERIZATION; TARGETED SYNTHESIS; HYDROGEN-PEROXIDE; RECENT PROGRESS; OXIDATION; CHEMISTRY in [Kumar, Arvind; Dhanpat, Shobha A.] Univ West Indies, Fac Sci & Technol, Dept Chem, St Augustine Campus, St Augustine, Trinidad Tobago; [Kurbah, Sunshine D.; Syiemlieh, Ibanphylla; Lal, Ram A.] North Eastern Hill Univ, Dept Chem, Ctr Adv Study, Shillong 793022, Meghalaya, India; [Borthakur, Rosmita] Tata Inst Fundamental Res, Ctr Interdisciplinary Sci, Hyderabad 500107, India in 2021, Cited 100. Product Details of 105-13-5. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Six heterobimetallic alkali metal dioxidovanadium(V) coordination polymer complexes {[M-6{VO(mu-O)}(2)(mu-OH)(4)(mu(4)-slox/nph)].n DMF}(infinity) where M = Na, K, and Cs; n = 1 for (1), 0 for (2)-(6) of two dihydrazone ligands, disalicylaldehydeoxaloyldihydrazone (H4slox) and bis(2-hydroxy-1-naphthaldehyde)oxaloyldihydrazone (H4nph) are reported. All the complexes have been characterized by various physicochemical techniques such as elemental analyses, molar conductance, IR, NMR, UV-vis, and cyclic voltammetry. The IR, (HNMR)-H-1, and (CNMR)-C-13 spectral data suggest that the dihydrazones are coordinated through phenolate/naphtholate oxygen, enolate oxygen, and azine nitrogen atoms to the metal centres. The structure of complex {[Na-6{VO(mu-O)}(2)(mu-OH)(4)(mu(4)-slox)].DMF}(infinity) (1) is also determined by single crystal X-ray data, which revealed that the H(4)slox coordinated via all possible dative sites to metal centres as tetrabasic octadentate ligand. The vanadium metal centres adopted distorted square-pyramidal coordination geometries, and the sodium atoms are also in five coordination atmospheres. The electronic spectra of the complexes showed LMCT bands in addition to intra-ligand pi -> pi* and n -> pi* transitions. As evident from the cyclic voltammetry, the complexes showed two metal centred electron transfer reactions {[((VVV)-V-V(slox)(2-)/(VVIV)-V-V(slox)(3-)] and [((VVIV)-V-V(slox)(3-)/(VVIV)-V-V(slox)(4-)]}, in addition to the ligand centred electron transfer reactions. Further, bovine serum albumin (BSA interaction studies of the complexes {[Na (6){VO(mu-O)} (2)(mu-OH) (4)(mu(4)-slox)].DMF} (infinity) (1) and [Na-6{VO(mu-O)}(2)(mu-OH)(4)(mu(4)nph)](infinity) (4) revealed strong binding affinity. Moreover, the catalytic studies of the complexes (1) and (4) were found to be effective for the oxidation of alcohols into their corresponding aldehydes and ketones and bromination of some organic substrates in the presence of H2O2 as an oxidizing agent.

Product Details of 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Kumar, A; Kurbah, SD; Syiemlieh, I; Dhanpat, SA; Borthakur, R; Lal, RA or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Extended knowledge of C8H10O2

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Ghosh, R; Jana, NC; Panda, S; Bagh, B or concate me.. Formula: C8H10O2

Formula: C8H10O2. Authors Ghosh, R; Jana, NC; Panda, S; Bagh, B in AMER CHEMICAL SOC published article about in [Ghosh, Rahul; Jana, Narayan Ch; Panda, Surajit; Bagh, Bidraha] HBNI, Natl Inst Sci Educ & Res NISER, Sch Chem Sci, Bhubaneswar 752050, Odisha, India in 2021, Cited 111. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Coordination of 1,4-disubstituted 1,2,3-triazoles L-1 and L-2 with [(p-cymene)RuCl2](2) followed by dehydrochlorination in the presence of a base resulted in the formation of complexes 1 and 2, respectively. Both were tested for the transfer hydrogenation of aldehydes and ketones in air using ecologically benign and cheap ethanol as the hydrogen source in the presence of a catalytic amount of a base. Air-stable complex 1 was proved to be an active catalyst for the transfer hydrogenation of a wide variety of aromatic and aliphatic aldehydes and ketones bearing various functionalities. Catalyst 1 was also effective for the transfer hydrogenation of carbonyls using the simplest primary alcohol, methanol, under aerobic conditions. Under the present catalytic protocol, labile or reducible functionalities such as nitro, cyano, and ester groups were tolerated. Good selectivity was also observed for acyclic alpha,beta-unsaturated carbonyls. However, this catalytic protocol was not selective for 2-cyclohexen-1-one as both alkene and keto moieties were reduced. The transfer hydrogenations are believed to proceed via a ruthenium-hydride intermediate. Finally, transfer hydrogenation of acetophenone using isopropanol as a commonly used hydrogen source was also performed and the sustainable and green credentials of these catalytic protocols utilizing methanol, ethanol, and isopropanol were compared with the help of the CHEM21 green metrics toolkit.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Ghosh, R; Jana, NC; Panda, S; Bagh, B or concate me.. Formula: C8H10O2

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What about chemistry interests you the most (4-Methoxyphenyl)methanol

Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Chahboun, R; Botubol-Ares, JM; Duran-Pena, MJ; Jimenez, F; Alvarez-Manzaneda, R; Alvarez-Manzaneda, E or concate me.

An article Deconjugative alpha-Alkylation of Cyclohexenecarboxaldehydes: An Access to Diverse Terpenoids WOS:000670661000018 published article about ALLYLATION; ALDEHYDES in [Botubol-Ares, Jose Manuel; Jesus Duran-Pena, Maria] Univ Cadiz, Fac Ciencias, Dept Quim Organ, Campus Univ Rio San Pedro S-N,4a Planta, Cadiz 11510, Spain; [Chahboun, Rachid; Jimenez, Fermin; Alvarez-Manzaneda, Enrique] Univ Granada, Fac Ciencias, Inst Biotecnol, Dept Quim Organ, Granada 18071, Spain; [Alvarez-Manzaneda, Ramon] Univ Almeria, Dept Quim & Fis, Area Quim Organ, Almeria 04120, Spain in 2021, Cited 37. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Formula: C8H10O2

A general and efficient method for the deconjugative alpha-alkylation of alpha,beta-unsaturated aldehydes promoted by a synergistic effect between (BuOK)-Bu-t and NaH, which considerably increases the reaction rate under mild conditions, is reported. The beta,gamma-unsaturated aldehyde, resulting from the alpha-alkylation, is transformed in high yield into the corresponding allyl acetate via a lead(IV) acetate-mediated oxidative fragmentation. This strategy could be used for the construction of the carbon skeleton of a wide variety of alkyl or arylterpenoids.

Formula: C8H10O2. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Chahboun, R; Botubol-Ares, JM; Duran-Pena, MJ; Jimenez, F; Alvarez-Manzaneda, R; Alvarez-Manzaneda, E or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Extended knowledge of (4-Methoxyphenyl)methanol

SDS of cas: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Choudhury, P; Behera, PK; Bisoyi, T; Sahu, SK; Sahu, RR; Prusty, SR; Stitgen, A; Scanlon, J; Kar, M; Rout, L or concate me.

SDS of cas: 105-13-5. Authors Choudhury, P; Behera, PK; Bisoyi, T; Sahu, SK; Sahu, RR; Prusty, SR; Stitgen, A; Scanlon, J; Kar, M; Rout, L in ROYAL SOC CHEMISTRY published article about in [Choudhury, Prabhupada; Behera, Pradyota Kumar; Bisoyi, Tanmayee; Sahu, Santosh Kumar; Sahu, Rashmi Ranjan; Prusty, Smruti Ranjita; Rout, Laxmidhar] Berhampur Univ, Dept Chem, Berhampur 760007, Odisha, India; [Stitgen, Abigail; Scanlon, Joseph] Ripon Coll, Dept Chem, Wisconsin Rapids, WI 54971 USA; [Sahu, Rashmi Ranjan; Kar, Manoranjan] IIT Patna, Dept Phys, Patna, Bihar, India; [Rout, Laxmidhar] Indian Inst Sci Educ & Res, Sch Chem Sci, Berhampur 760007, Odisha, India in 2021, Cited 25. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Herein, we report a new protocol for the dehydrogenative oxidation of aryl methanols using the cheap and commercially available catalyst CuSeO3 center dot 2H(2)O. Oxygen-bridged [Cu-O-Se] bimetallic catalysts are not only less expensive than other catalysts used for the dehydrogenative oxidation of aryl alcohols, but they are also effective under mild conditions and at low concentrations. The title reaction proceeds with a variety of aromatic and heteroaromatic methanol examples, obtaining the corresponding carbonyls in high yields. This is the first example using an oxygen-bridged copper-based bimetallic catalyst [Cu-O-Se] for dehydrogenative benzylic oxidation. Computational DFT studies reveal simultaneous H-transfer and Cu-O bond breaking, with a transition-state barrier height of 29.3 kcal mol(-1).

SDS of cas: 105-13-5. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Choudhury, P; Behera, PK; Bisoyi, T; Sahu, SK; Sahu, RR; Prusty, SR; Stitgen, A; Scanlon, J; Kar, M; Rout, L or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Extended knowledge of (4-Methoxyphenyl)methanol

Category: alcohols-buliding-blocks. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Yue, HX; Li, S; Qin, JX; Gao, TT; Lyu, JJ; Liu, Y; Wang, XW; Guan, Z; Zhu, ZQ; Niu, B; Zhong, RG; Guo, J; Wang, JH or concate me.

Recently I am researching about NEURAL-TUBE DEFECTS; PRIMARY CILIA; JOUBERT SYNDROME; GENE-EXPRESSION; MYOINOSITOL; MUTATIONS; PREVALENCE; REVEALS; GLUCOSE; ROLES, Saw an article supported by the National Key Basic Research ProgramNational Basic Research Program of China [2018YFC1002502, 2018YFC1002503]; Joint Foundation Program of Beijing Municipal Natural Science Foundation; Beijing Municipal Education CommissionBeijing Municipal Commission of Education [KZ201810028045]; National Nature Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [81571443, 81801451, 81600984, 81700777]; Beijing Natural Science FoundationBeijing Natural Science Foundation [7172038]. Published in FRONTIERS MEDIA SA in LAUSANNE ,Authors: Yue, HX; Li, S; Qin, JX; Gao, TT; Lyu, JJ; Liu, Y; Wang, XW; Guan, Z; Zhu, ZQ; Niu, B; Zhong, RG; Guo, J; Wang, JH. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol. Category: alcohols-buliding-blocks

The inositol polyphosphate-5-phosphatase E (Inpp5e) gene is located on chromosome 9q34.3. The enzyme it encodes mainly hydrolyzes the 5-phosphate groups of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns (3,4,5) P3) and phosphatidylinositol (4,5)-bisphosphate (PtdIns (4,5)P2), which are closely related to ciliogenesis and embryonic neurodevelopment, through mechanisms that are largely unknown. Here we studied the role of Inpp5e gene in ciliogenesis during embryonic neurodevelopment using inositol-deficiency neural tube defects (NTDs) mouse and cell models. Confocal microscopy and scanning electron microscope were used to examine the number and the length of primary cilia. The dynamic changes of Inpp5e expression in embryonic murine brain tissues were observed during Embryonic Day 10.5-13.5 (E 10.5-13.5). Immunohistochemistry, western blot, polymerase chain reaction (PCR) arrays were applied to detect the expression of Inpp5e and cilia-related genes of the embryonic brain tissues in inositol deficiency NTDs mouse. Real-time quantitative PCR (RT-qPCR) was used to validate the candidate genes in cell models. The levels of inositol and PtdIns(3,4) P2 were measured using gas chromatography-mass spectrometry (GC-MS) and enzyme linked immunosorbent assay (ELISA), respectively. Our results showed that the expression levels of Inpp5e gradually decreased in the forebrain tissues of the control embryos, but no stable trend was observed in the inositol deficiency NTDs embryos. Inpp5e expression in inositol deficiency NTDs embryos was significantly decreased compared with the control tissues. The expression levels of Inpp5e gene and the PtdIns (3,4) P2 levels were also significantly decreased in the inositol deficient cell model. A reduced number and length of primary cilia were observed in NIH3T3 cells when inositol deficient. Three important cilia-related genes (Ift80, Mkks, Smo) were down-regulated significantly in the inositol-deficient NTDs mouse and cell models, and Smo was highly involved in NTDs. In summary, these findings suggested that down-regulation of Inpp5e might be associated with abnormal ciliogenesis during embryonic neurodevelopment, under conditions of inositol deficiency.

Category: alcohols-buliding-blocks. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Yue, HX; Li, S; Qin, JX; Gao, TT; Lyu, JJ; Liu, Y; Wang, XW; Guan, Z; Zhu, ZQ; Niu, B; Zhong, RG; Guo, J; Wang, JH or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Let`s talk about compound :(4-Methoxyphenyl)methanol

Safety of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wu, D; Bu, QQ; Guo, C; Dai, B; Liu, N or concate me.

An article Cooperative catalysis of molybdenum with organocatalysts for distribution of products between amines and imines WOS:000626274000005 published article about SELECTIVE N-ALKYLATION; ONE-POT SYNTHESIS; BORROWING HYDROGEN; EFFICIENT CATALYSTS; BETA-ALKYLATION; IRIDIUM COMPLEX; ALCOHOLS; RUTHENIUM; SULFONAMIDES; AMINATION in [Wu, Di; Bu, Qingqing; Dai, Bin; Liu, Ning] Shihezi Univ, Sch Chem & Chem Engn, Key Lab Green Proc Chem Engn Xinjiang Bingtuan, North Fourth Rd, Shihezi 832003, Xinjiang, Peoples R China; [Guo, Cheng] Zhejiang Univ, Affiliated Hosp 2, Sch Med, Canc Inst, Hangzhou 310009, Zhejiang, Peoples R China in 2021, Cited 73. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Safety of (4-Methoxyphenyl)methanol

Multi-amino groups and nitrogen donors compound was discovered as an organocatalyst for N-alkylation of alcohols with amines in the presence of Mo(CO)6. The Mo(CO)6/organocatalyst binary system has shown to be a highly active catalyst for the N-alkylation reaction between alcohols and amines with excellent tolerance of variable starting materials bearing different functional groups. Of particular note, this method possessing a superiority selectivity in the synthesis of N-alkylated amines or imines, which can be controlled by the reaction temperature. The cooperative catalysis mechanism in combination of Mo(CO)6 with organocatalyst was elucidated by control experiments.

Safety of (4-Methoxyphenyl)methanol. About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Wu, D; Bu, QQ; Guo, C; Dai, B; Liu, N or concate me.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts