An update on the compound challenge: (4-Methoxyphenyl)methanol

Recommanded Product: (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Barma, A; Bhattacharjee, A; Roy, P or send Email.

Recommanded Product: (4-Methoxyphenyl)methanol. Barma, A; Bhattacharjee, A; Roy, P in [Barma, Arpita; Bhattacharjee, Aradhita; Roy, Partha] Jadavpur Univ, Dept Chem, Kolkata 700032, India published Dinuclear Copper(II) Complexes with N,O Donor Ligands: Partial Ligand Hydrolysis and Alcohol Oxidation Catalysis in 2021, Cited 115. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

Two copper(II) complexes [Cu-2(L-1)(2)] (1) and [Cu-2(L-2)(2)] (2) where H2L1=2-hydroxy-3-((3-hydroxy-2,2-dimethylpropylimino)methyl)-5-methylbenzaldehyde and H2L2=2-hydroxy-3-(((1-hydroxypropan-2-yl)imino)methyl)-5-methylbenzaldehyde have been synthesized and used as catalysts in alcohol oxidation. 2,6-Diformyl-4-methylphenol (DFP) based Schiff-base ligands, 3,3 ‘-(2-hydroxy-5-methyl-1,3-phenylene)bis(methan-1-yl-1-ylidene)bis(azan-1-yl-1-ylidene)bis(2,2-dimethylpropan-1-ol) (H3L ‘) and 2,2 ‘-(((2-hydroxy-5-methyl-1,3-phenylene)bis(methanylylidene))bis(azanylylidene))bis(propan-1-ol) (H3L ”), undergo partial hydrolysis to convert one of the azomethine groups to aldehyde group to give H2L1 and H2L2, and then react with copper(II) acetate to yield complex 1 and 2, respectively. These complexes have been characterized by standard methods such as elemental analysis, room temperature magnetic studies, FT-IR, UV-vis, ESI-mass spectral analyses, cyclic voltammogram, etc. The structures of dinuclear complexes with modified ligands have been confirmed by single crystal X-ray diffraction analysis. Complex 1 and 2 have been used as catalysts for the oxidation of benzyl alcohol, 4-methyl benzyl alcohol, 4-methoxy benzyl alcohol, 4-nitro benzyl alcohol and 4-bromo benzyl alcohol to the corresponding aldehyde as the sole product. Efficiency of the catalyst depends on the chain length and substitution on the chain of the ligand.

Recommanded Product: (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Barma, A; Bhattacharjee, A; Roy, P or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

An overview of features, applications of compound:C8H10O2

Welcome to talk about 105-13-5, If you have any questions, you can contact Kargar, H; Forootan, P; Fallah-Mehrjardi, M; Behjatmanesh-Ardakani, R; Rudbari, HA; Munawar, KS; Ashfaq, M; Tahir, MN or send Email.. Recommanded Product: 105-13-5

Recently I am researching about AEROBIC OXIDATION; CIS-DIOXOMOLYBDENUM(VI) COMPLEXES; MOLYBDENUM(VI) COMPLEX; HYDROGEN-PEROXIDE; MOLECULAR-OXYGEN; SC-XRD; EPOXIDATION; METAL; EFFICIENT; BENZALDEHYDE, Saw an article supported by the . Published in ELSEVIER SCIENCE SA in LAUSANNE ,Authors: Kargar, H; Forootan, P; Fallah-Mehrjardi, M; Behjatmanesh-Ardakani, R; Rudbari, HA; Munawar, KS; Ashfaq, M; Tahir, MN. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol. Recommanded Product: 105-13-5

Two new oxovanadium and dioxomolybdenum Schiff base complexes, [VvO(L)(OCH3)(CH3OH)] and [MoVIO2(L) (CH2CH3OH)], were synthesized by treating an ONO-donor type Schiff base ligand (H2L) derived by condensation of 5-nitrosalicylaldehyde and nicotinic hydrazide with oxo and dioxo acetylacetonate salts of vanadium and molybdenum, [VO(acac)2 and MoO2(acac)2], respectively. The synthesized ligand and complexes were characterized by various spectroscopic techniques like FT-IR, multinuclear (1H, 13C) NMR, elemental analysis and the most authentic single crystal X-ray diffraction analysis. In both complexes the geometry around the central metal ions was distorted octahedral as revealed by the data collected from diffraction studies. Theoretical calculation of the synthesized compounds were carried out by DFT as well as TD-DFT using B3LYP method by employing the Def2-TZVP basis set. The findings of theoretical data indicated that the calculated results are in accordance with the experimental findings. Moreover, the catalytic efficiencies of both complexes were investigated by oxidizing the benzylic alcohols in the presence of urea hydrogen peroxide (UHP) in acetonitrile.

Welcome to talk about 105-13-5, If you have any questions, you can contact Kargar, H; Forootan, P; Fallah-Mehrjardi, M; Behjatmanesh-Ardakani, R; Rudbari, HA; Munawar, KS; Ashfaq, M; Tahir, MN or send Email.. Recommanded Product: 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What unique challenges do researchers face in 105-13-5

COA of Formula: C8H10O2. Welcome to talk about 105-13-5, If you have any questions, you can contact Wang, J; Gu, XM; Pei, LJ; Kong, P; Zhang, J; Wang, XY; Wang, RY; Waclawik, ER; Zheng, ZF or send Email.

I found the field of Chemistry; Engineering very interesting. Saw the article Strong metal-support interaction induced O-2 activation over Au/MNb2O6 (M= Zn2+, Ni2+ and Co2+) for efficient photocatalytic benzyl alcohol oxidative esterification published in 2021. COA of Formula: C8H10O2, Reprint Addresses Gu, XM; Zheng, ZF (corresponding author), Chinese Acad Sci, Inst Coal Chem, State Key Lab Coal Convers, Taiyuan 030001, Peoples R China.; Waclawik, ER (corresponding author), Queensland Univ Technol, Sch Chem Phys & Mech Engn, Brisbane, Qld 4001, Australia.. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol

A series of metal niobates (MNb2O6, M = Zn2+, Ni2+ and Co2+) were prepared from H-niobate precursor under hydrothermal conditions, in which amino groups of L-lysine play an important role. Au nanoparticles were then supported on these niobates by NaBH4 reduction method. More importantly, the strong interaction between Au nanoparticles and ZnNb2O6 generates negatively charged Au which can activate molecular oxygen to form the exclusive high-active peroxide (NbOOAu) species on Au/ZnNb2O6 surface under visible light irradiation, observed in situ by diffuse reflectance infrared Fourier transform spectra (DRIFTS). The optimal NbOOAu species produced on the surface of Au/ZnNb2O6 can remove the H atom of the methylene group (-CH2-) of benzyl alcohol, leading to high photocatalytic activity of Au/ZnNb2O6 compared with Au/NiNb2O6 and Au/CoNb2O6. This modulation of interaction of Au and niobates for the activation of molecular oxygen provides a new prospect for highly selective photocatalytic oxidation reactions.

COA of Formula: C8H10O2. Welcome to talk about 105-13-5, If you have any questions, you can contact Wang, J; Gu, XM; Pei, LJ; Kong, P; Zhang, J; Wang, XY; Wang, RY; Waclawik, ER; Zheng, ZF or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Brief introduction of (4-Methoxyphenyl)methanol

SDS of cas: 105-13-5. Welcome to talk about 105-13-5, If you have any questions, you can contact Kumar, A; Kurbah, SD; Syiemlieh, I; Dhanpat, SA; Borthakur, R; Lal, RA or send Email.

SDS of cas: 105-13-5. In 2021 INORG CHIM ACTA published article about CRYSTAL-STRUCTURES; DIOXIDOVANADIUM(V) COMPLEXES; ALKALI-METAL; OXIDOVANADIUM(IV) COMPLEXES; STRUCTURAL-CHARACTERIZATION; TARGETED SYNTHESIS; HYDROGEN-PEROXIDE; RECENT PROGRESS; OXIDATION; CHEMISTRY in [Kumar, Arvind; Dhanpat, Shobha A.] Univ West Indies, Fac Sci & Technol, Dept Chem, St Augustine Campus, St Augustine, Trinidad Tobago; [Kurbah, Sunshine D.; Syiemlieh, Ibanphylla; Lal, Ram A.] North Eastern Hill Univ, Dept Chem, Ctr Adv Study, Shillong 793022, Meghalaya, India; [Borthakur, Rosmita] Tata Inst Fundamental Res, Ctr Interdisciplinary Sci, Hyderabad 500107, India in 2021, Cited 100. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

Six heterobimetallic alkali metal dioxidovanadium(V) coordination polymer complexes {[M-6{VO(mu-O)}(2)(mu-OH)(4)(mu(4)-slox/nph)].n DMF}(infinity) where M = Na, K, and Cs; n = 1 for (1), 0 for (2)-(6) of two dihydrazone ligands, disalicylaldehydeoxaloyldihydrazone (H4slox) and bis(2-hydroxy-1-naphthaldehyde)oxaloyldihydrazone (H4nph) are reported. All the complexes have been characterized by various physicochemical techniques such as elemental analyses, molar conductance, IR, NMR, UV-vis, and cyclic voltammetry. The IR, (HNMR)-H-1, and (CNMR)-C-13 spectral data suggest that the dihydrazones are coordinated through phenolate/naphtholate oxygen, enolate oxygen, and azine nitrogen atoms to the metal centres. The structure of complex {[Na-6{VO(mu-O)}(2)(mu-OH)(4)(mu(4)-slox)].DMF}(infinity) (1) is also determined by single crystal X-ray data, which revealed that the H(4)slox coordinated via all possible dative sites to metal centres as tetrabasic octadentate ligand. The vanadium metal centres adopted distorted square-pyramidal coordination geometries, and the sodium atoms are also in five coordination atmospheres. The electronic spectra of the complexes showed LMCT bands in addition to intra-ligand pi -> pi* and n -> pi* transitions. As evident from the cyclic voltammetry, the complexes showed two metal centred electron transfer reactions {[((VVV)-V-V(slox)(2-)/(VVIV)-V-V(slox)(3-)] and [((VVIV)-V-V(slox)(3-)/(VVIV)-V-V(slox)(4-)]}, in addition to the ligand centred electron transfer reactions. Further, bovine serum albumin (BSA interaction studies of the complexes {[Na (6){VO(mu-O)} (2)(mu-OH) (4)(mu(4)-slox)].DMF} (infinity) (1) and [Na-6{VO(mu-O)}(2)(mu-OH)(4)(mu(4)nph)](infinity) (4) revealed strong binding affinity. Moreover, the catalytic studies of the complexes (1) and (4) were found to be effective for the oxidation of alcohols into their corresponding aldehydes and ketones and bromination of some organic substrates in the presence of H2O2 as an oxidizing agent.

SDS of cas: 105-13-5. Welcome to talk about 105-13-5, If you have any questions, you can contact Kumar, A; Kurbah, SD; Syiemlieh, I; Dhanpat, SA; Borthakur, R; Lal, RA or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Some scientific research about 105-13-5

Welcome to talk about 105-13-5, If you have any questions, you can contact Liu, YY; Xiong, J; Wei, L; Wan, JP or send Email.. Recommanded Product: (4-Methoxyphenyl)methanol

In 2020 ADV SYNTH CATAL published article about SELECTIVE SYNTHESIS; COUPLING REACTIONS; ALPHA; TRICHLOROMETHYL; CLEAVAGE; REDUCTION; ALKYNES; ALPHA,ALPHA-DIBROMOACETOPHENONES; TRIPHENYLPHOSPHINE; HYDROXYLATION in [Liu, Yunyun; Xiong, Jin; Wei, Li; Wan, Jie-Ping] Jiangxi Normal Univ, Coll Chem & Chem Engn, Nanchang 330022, Jiangxi, Peoples R China in 2020, Cited 77. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Recommanded Product: (4-Methoxyphenyl)methanol

The novel free radical-based cleavage of the enaminone C=C double bond is realized by using N-halosuccinimides (NXS) in the presence of benzoyl peroxide (BPO) with mild heating, enabling the tunable synthesis of alpha,alpha-dihalomethyl ketones and alpha,alpha,alpha-trihalomethyl ketones under different reaction conditions. The formation of these divergent products involving featured C=C double bond cleavage requires no any metal reagent, and represents one more practical example on the synthesis of poly halogenated methyl ketones via the functionalization of carbon-carbon bond.

Welcome to talk about 105-13-5, If you have any questions, you can contact Liu, YY; Xiong, J; Wei, L; Wan, JP or send Email.. Recommanded Product: (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

More research is needed about 105-13-5

Welcome to talk about 105-13-5, If you have any questions, you can contact Alam, MN; Dash, SR; Mukherjee, A; Pandole, S; Marelli, UK; Vanka, K; Maity, P or send Email.. Recommanded Product: (4-Methoxyphenyl)methanol

Recommanded Product: (4-Methoxyphenyl)methanol. Authors Alam, MN; Dash, SR; Mukherjee, A; Pandole, S; Marelli, UK; Vanka, K; Maity, P in AMER CHEMICAL SOC published article about in [Alam, Md Nirshad; Mukherjee, Anirban; Pandole, Satish; Marelli, Udaya Kiran; Maity, Pradip] CSIR Natl Chem Lab, Organ Chem Div, Pune 411008, Maharashtra, India; [Alam, Md Nirshad; Dash, Soumya Ranjan; Marelli, Udaya Kiran; Vanka, Kumar] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India; [Dash, Soumya Ranjan; Vanka, Kumar] CSIR Natl Chem Lab, Phys & Mat Chem Div, Pune 411008, Maharashtra, India in 2021, Cited 55. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

A thermal O-to-C [1,3]-rearrangement of alpha-hydroxy acid derived enol ethers was achieved under mild conditions. The 2-aminothiophenol protection of carboxylic acids facilitates formation of the [1,3] precursor and its thermal rearrangement via stabilization of a radical intermediate. Experimental and theoretical evidence for dissociative radical pair formation, its captodative stability via aminothiophenol, and a unique solvent effect are presented. The aminothiophenol was deprotected from rearrangement products as well as after derivatization to useful synthons.

Welcome to talk about 105-13-5, If you have any questions, you can contact Alam, MN; Dash, SR; Mukherjee, A; Pandole, S; Marelli, UK; Vanka, K; Maity, P or send Email.. Recommanded Product: (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Awesome Chemistry Experiments For C8H10O2

Product Details of 105-13-5. Welcome to talk about 105-13-5, If you have any questions, you can contact Fernandes, RA; Sampaio, MJ; Da Silva, ES; Boumeriame, H; Lopes, T; Andrade, L; Mendes, A; Faria, JL; Silva, CG or send Email.

An article Sustainable production of value-added chemicals and fuels by using a citric acid-modified carbon nitride optical semiconductor WOS:000599504600004 published article about SELECTIVE OXIDATION; HIGHLY EFFICIENT; PHOTOCATALYTIC OXIDATION; HYDROGEN EVOLUTION; AROMATIC ALCOHOLS; QUANTUM DOTS; G-C3N4; WATER; BENZALDEHYDE; FABRICATION in [Fernandes, Raquel A.; Sampaio, Maria J.; Da Silva, Eliana S.; Boumeriame, Hanane; Faria, Joaquim L.; Silva, Claudia G.] Univ Porto, Fac Engn, Associate Lab LSRE LCM, Rua Dr Roberto Frias S-N, P-4200465 Porto, Portugal; [Boumeriame, Hanane] Univ Abdelmalek Essaadi, Fac Sci & Tech, Lab Chem Engn & Valorizat Resources LGCVR UAE L01, Tangier, Morocco; [Lopes, Tania; Andrade, Luisa; Mendes, Adelio] Univ Porto, Fac Engn, LEPABE Lab Proc Engn Environm Biotechnol & Energy, Rua Dr Roberto Frias, P-4200465 Porto, Portugal in 2021, Cited 70. Product Details of 105-13-5. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Citric acid-modified graphite-like carbon nitride materials (GCN-zCA) were synthetized by thermal copolymerization of dicyandiamide with different amounts of citric acid (z = between 5 and 25 mg). The resulting materials presented surface porosity, defective polymeric structure, and enhanced visible light absorption in the 450-700 nm range, attributed to the existence of mid-gap states and n-pi* electronic transitions. All the modified catalysts presented high selectivity (>99 %) towards the conversion of p-anisyl alcohol into p-anisaldehyde under visible-LED irradiation, the best performing photocatalyst (GCN-20CA) reaching 63 % yield (contrasting with 22 % obtained with bulk GCN) after 240 min reaction. GCN-20CA was also applied for hydrogen generation from water splitting. The modified material practically duplicated the hydrogen production when compared to bulk GCN (75 and 44 mu mol H-2 evolved in three hours, respectively), by using platinum nanoparticles as co-catalyst and EDTA as sacrificial electron donor. Moreover, p-anisyl alcohol was successfully used as sacrificial agent for water splitting, with simultaneous production of p-anisaldehyde and H-2. Reusability tests showed that GCN-20CA remained stable in a series of consecutive runs both for p-anisaldehyde synthesis and hydrogen production.

Product Details of 105-13-5. Welcome to talk about 105-13-5, If you have any questions, you can contact Fernandes, RA; Sampaio, MJ; Da Silva, ES; Boumeriame, H; Lopes, T; Andrade, L; Mendes, A; Faria, JL; Silva, CG or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Search for chemical structures by a sketch :105-13-5

Recommanded Product: (4-Methoxyphenyl)methanol. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Li, YT; Sun, S; Cheng, J; Yu, JT in [Li, Yiting; Sun, Song; Cheng, Jiang; Yu, Jin-Tao] Changzhou Univ, Sch Petrochem Engn, Jiangsu Key Lab Adv Catalyt Mat & Technol, Changzhou 213164, Peoples R China published Alkylarylation of N-allylbenzamides and N-allylanilines with simple ethers for the direct construction of ether substituted dihydroisoquinolinones and indolines in 2020, Cited 56. Recommanded Product: (4-Methoxyphenyl)methanol. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

A radical-initiated cascade addition and cyclization of N-allylbenzamides with simple ethers to construct ether-substituted dihydroisoquinolinones was performed in the presence of CuI. The cleavage of the sp(3) C-H bond in ether and the sp(2) C-H bond in phenyl was involved in this reaction. Moreover, the arylalkylation of N-allylanilines was also realized under similar reaction conditions, providing ether-functionalized indolines in good to moderate yields.

Recommanded Product: (4-Methoxyphenyl)methanol. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Chemistry Milestones Of (4-Methoxyphenyl)methanol

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Application In Synthesis of (4-Methoxyphenyl)methanol

Authors Behera, PK; Choudhury, P; Sahu, SK; Sahu, RR; Harvat, AN; McNulty, C; Stitgen, A; Scanlon, J; Kar, M; Rout, L in WILEY-V C H VERLAG GMBH published article about CATALYZED SELECTIVE OXIDATION; AEROBIC OXIDATION; HYDROGEN-PEROXIDE; C-N; COPPER; METAL; ALDEHYDES; NANOPARTICLES; COMPLEXES; EFFICIENT in [Behera, Pradyota Kumar; Choudhury, Prabhupada; Sahu, Santosh Kumar; Sahu, Rashmi Ranjan; Rout, Laxmidhar] Berhampur Univ, Dept Chem, Berhampur 760007, Orissa, India; [Rout, Laxmidhar] IISER, Dept Chem, Berhampur 760010, Odisha, India; [Harvat, Alisha N.; McNulty, Caitlin; Stitgen, Abigail; Scanlon, Joseph] Ripon Coll, Ripon, WI 54971 USA; [Kar, Manoranjan] IIT Patna, Patna 801106, Bihar, India in 2021, Cited 113. Application In Synthesis of (4-Methoxyphenyl)methanol. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Though concept of oxygen bridged bimetallic catalyst for organic reaction is not well understood. Herein, we have tried to explain the concept by experimental as well as its support by full DFT study. We report here a competent protocol for dehydrogenative oxidation of benzylic alcohol using an oxygen bridged bimetallic CuMoO4 nano catalyst. Careful demonstration reveals that oxidation is not effective either with mono-metallic Cu (II) or Mo(VI); instead combination of both the metals through the oxygen bridge [Cu-O-Mo] unexpectedly and interestingly catalyzed the reaction efficiently. The new concept is strongly supported by computational DFT study. DFT study reveals dehydrogenative oxidation is preferred at copper centre over molybdenum and aromatic benzyl alcohols are greatly stabilised. Interaction barrier energy of monometallic CuO and MoO3 catalyst is much higher than bimetallic CuMoO4. Hydrogen transfer has larger barrier heights for CuO (31.5 kcal/mol) and MoO3 (40.3 kcal/mol) than bimetallic CuMoO4.

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Application In Synthesis of (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What kind of challenge would you like to see in a future of compound:105-13-5

Recommanded Product: 105-13-5. Welcome to talk about 105-13-5, If you have any questions, you can contact Bavandpour, R; Rajabi, M; Karimi-Maleh, H; Asghari, A or send Email.

An article Application of deep eutectic solvent and SWCNT-ZrO2 nanocomposite as conductive mediators for the fabrication of simple and rapid electrochemical sensor for determination of trace anti-migration drugs WOS:000647794500010 published article about CARBON-PASTE ELECTRODE; SOLID-PHASE EXTRACTION; VOLTAMMETRIC SENSOR; GRAPHENE OXIDE; RIZATRIPTAN BENZOATE; GLUCOSE SENSOR; ASCORBIC-ACID; MIGRAINE; TRIPTANS; ACETAMINOPHEN in [Bavandpour, Razieh; Rajabi, Maryam; Asghari, Alireza] Semnan Univ, Dept Chem, Semnan 35195363, Iran; [Karimi-Maleh, Hassan] Univ Elect Sci & Technol China, Sch Resources & Environm, POB 611731,Xiyuan Ave, Chengdu, Peoples R China; [Karimi-Maleh, Hassan] Quchan Univ Technol, Dept Chem Engn, Quchan, Iran; [Karimi-Maleh, Hassan] Univ Johannesburg, Dept Chem Sci, POB 17011,Doornfontein Campus, ZA-2028 Johannesburg, South Africa in 2021, Cited 73. Recommanded Product: 105-13-5. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

In this study, a green deep eutectic solvent (DES) was synthesized at room temperature-based choline chloride (ChCl) and 4-methoxybenzyl alcohol (Anisyl alcohol (An-OH)) used as the conductive binder for modification of carbon paste electrode (CPE). In addition, single wall carbon nanotubes decorated by ZrO2 (SWCNT-ZrO2) nanocomposite was synthesized by the hydrothermal method and characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDAX), and X-ray powder diffraction (XRD) analytical techniques. The DES and SWCNT-ZrO2 were used as a binder and modifier in the carbon paste electrode structure to form CPE/DES/SWCNT-ZrO2 as an electrochemical sensor for the simultaneous determination of paracetamol and rizatriptan as two anti-migration drugs for the first time. In the direction of optimal experimental conditions, the effective parameters such as pH, amount of modifier, and electrolyte type were optimized. Under these conditions, the limits of detection (LODs) 0.7 nM and 9.0 nM; linear dynamic ranges (LDRs) 0.003?100 and 0.08?100; and relative standard deviations (RSDs for n = 5) 1.63 and 1.52 were sequentially found for rizatriptan and paracetamol. The results indicate that the sensor can be applied for the detection of trace amounts of paracetamol and rizatriptan in clinical and pharmaceutical samples.

Recommanded Product: 105-13-5. Welcome to talk about 105-13-5, If you have any questions, you can contact Bavandpour, R; Rajabi, M; Karimi-Maleh, H; Asghari, A or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts