Our Top Choice Compound:(4-Methoxyphenyl)methanol

Welcome to talk about 105-13-5, If you have any questions, you can contact Paul, A; Shipman, MA; Onabule, DY; Sproules, S; Symes, MD or send Email.. Name: (4-Methoxyphenyl)methanol

Name: (4-Methoxyphenyl)methanol. Authors Paul, A; Shipman, MA; Onabule, DY; Sproules, S; Symes, MD in ROYAL SOC CHEMISTRY published article about in [Paul, Avishek; Shipman, Michael A.; Onabule, Dolapo Y.; Sproules, Stephen; Symes, Mark D.] Univ Glasgow, Sch Chem, WestCHEM, Univ Ave, Glasgow G12 8QQ, Lanark, Scotland in 2021, Cited 30. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

The enhancement of reactivity inside supramolecular coordination cages has many analogies to the mode of action of enzymes, and continues to inspire the design of new catalysts for a range of reactions. However, despite being a near-ubiquitous class of reactions in organic chemistry, enhancement of the reduction of carbonyls to their corresponding alcohols remains very much underexplored in supramolecular coordination cages. Herein, we show that encapsulation of small aromatic aldehydes inside a supramolecular coordination cage allows the reduction of these aldehydes with the mild reducing agent sodium cyanoborohydride to proceed with high selectivity (ketones and esters are not reduced) and in good yields. In the absence of the cage, low pH conditions are essential for any appreciable conversion of the aldehydes to the alcohols. In contrast, the specific microenvironment inside the cage allows this reaction to proceed in bulk solution that is pH-neutral, or even basic. We propose that the cage acts to stabilise the protonated oxocarbenium ion reaction intermediates (enhancing aldehyde reactivity) whilst simultaneously favouring the encapsulation and reduction of smaller aldehydes (which fit more easily inside the cage). Such dual action (enhancement of reactivity and size-selectivity) is reminiscent of the mode of operation of natural enzymes and highlights the tremendous promise of cage architectures as selective catalysts.

Welcome to talk about 105-13-5, If you have any questions, you can contact Paul, A; Shipman, MA; Onabule, DY; Sproules, S; Symes, MD or send Email.. Name: (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

An overview of features, applications of compound:C8H10O2

Welcome to talk about 105-13-5, If you have any questions, you can contact Yao, HY; Wang, YS; Razi, MK or send Email.. Recommanded Product: 105-13-5

Recommanded Product: 105-13-5. Authors Yao, HY; Wang, YS; Razi, MK in ROYAL SOC CHEMISTRY published article about in [Yao, Hongyan] Hebi Polytech, Deans Off, Hebi 458030, Peoples R China; [Wang, Yongsheng] Henan Polytech Univ, Sch Phys Sci Educ, Jiaozuo 454003, Henan, Peoples R China; [Razi, Maryam Kargar] Islamic Azad Univ, North Branch Tehran, Fac Chem, Tehran, Iran in 2021, Cited 82. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

In this study, a magnetic asymmetric Salamo-based Zn complex (H2L = salen type di-Schiff bases)-supported on the surface of modified Fe3O4 (Fe3O4@H2L-Zn) as a new catalyst was designed and characterized via numerous analytical techniques such as FT-IR spectroscopy, XRD, EDS, ICP-AES, SEM, TEM, TGA and VSM. An efficient and sustainable synthetic protocol has been presented for the synthesis of silyl ether substructures via the silyl protection of alcohols under mild conditions. The synthetic protocol involves a two-component solvent-free reaction between various hydroxyl-bearing substrates and hexamethyldisilazane (HMDS) as an inexpensive silylating agent using Fe3O4@H2L-Zn MNPs as a magnetically separable, recyclable and reusable heterogeneous catalyst. Fe3O4@H2L-Zn MNPs were also applied for the removal of silyl protecting groups from hydroxyl functions using water in CH2Cl2 under green conditions. The catalyst demonstrated good to excellent catalytic yield efficiency for both the reactions compared to the commercial metal-based catalysts under green conditions for a wide range of substrates.

Welcome to talk about 105-13-5, If you have any questions, you can contact Yao, HY; Wang, YS; Razi, MK or send Email.. Recommanded Product: 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Something interesting about (4-Methoxyphenyl)methanol

Welcome to talk about 105-13-5, If you have any questions, you can contact Mehrjoyan, F; Afshari, M or send Email.. Formula: C8H10O2

An article Nano NiFe 2 O 4 supported phenanthroline Cu(II) complex as a retrievable catalyst for selective and environmentally friendly oxidation of benzylic alcohols WOS:000647557500013 published article about NICKEL FERRITE NANOPARTICLES; AEROBIC OXIDATION; MAGNETIC NANOPARTICLES; MECHANISM; ALDEHYDES; EFFICIENT; LIGAND in [Mehrjoyan, Forouzan] Islamic Azad Univ, Dept Chem, Ahvaz Branch, Ahvaz, Iran; [Afshari, Mozhgan] Islamic Azad Univ, Dept Chem, Shoushtar Branch, Shoushtar 6451741117, Iran in 2021, Cited 34. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Formula: C8H10O2

A new magnetically recoverable catalyst consisting of phenanthroline Cu(II) complex supported on nickel ferrite nanoparticles was prepared. The synthesized catalyst was characterized by Fourier transform in-frared spectroscopy, X-ray diffraction, transmission and scanning electron microscopes, thermogravimetry, energy dispersive X-ray spectroscopy, vibrating sample magnetometry and inductively coupled plasma. Supported copper complex used for solvent free oxidation of 1-phenyl ethanol as a model. Influence of the reaction parameters (kind of oxidant, amount of the catalyst, reaction time, solvent and reaction temperature) were studied. Because of the immobilized complex has been shown to be an efficient het-erogeneous catalyst for the selective oxidation of 1-phenyl ethanol to acetophenone (94% yield) by hydro-gen peroxide so this green approach extended to other benzylic alcohols. The catalyst had been reused 10 times with no significant loss of catalytic activity. SEM, EDX, XRD, and ICP analysis of reused catalyst indicated that the catalyst was stable after the reaction. (c) 2021 Published by Elsevier B.V.

Welcome to talk about 105-13-5, If you have any questions, you can contact Mehrjoyan, F; Afshari, M or send Email.. Formula: C8H10O2

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

How did you first get involved in researching (4-Methoxyphenyl)methanol

Welcome to talk about 105-13-5, If you have any questions, you can contact Paul, A; Shipman, MA; Onabule, DY; Sproules, S; Symes, MD or send Email.. Name: (4-Methoxyphenyl)methanol

Name: (4-Methoxyphenyl)methanol. Authors Paul, A; Shipman, MA; Onabule, DY; Sproules, S; Symes, MD in ROYAL SOC CHEMISTRY published article about in [Paul, Avishek; Shipman, Michael A.; Onabule, Dolapo Y.; Sproules, Stephen; Symes, Mark D.] Univ Glasgow, Sch Chem, WestCHEM, Univ Ave, Glasgow G12 8QQ, Lanark, Scotland in 2021, Cited 30. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

The enhancement of reactivity inside supramolecular coordination cages has many analogies to the mode of action of enzymes, and continues to inspire the design of new catalysts for a range of reactions. However, despite being a near-ubiquitous class of reactions in organic chemistry, enhancement of the reduction of carbonyls to their corresponding alcohols remains very much underexplored in supramolecular coordination cages. Herein, we show that encapsulation of small aromatic aldehydes inside a supramolecular coordination cage allows the reduction of these aldehydes with the mild reducing agent sodium cyanoborohydride to proceed with high selectivity (ketones and esters are not reduced) and in good yields. In the absence of the cage, low pH conditions are essential for any appreciable conversion of the aldehydes to the alcohols. In contrast, the specific microenvironment inside the cage allows this reaction to proceed in bulk solution that is pH-neutral, or even basic. We propose that the cage acts to stabilise the protonated oxocarbenium ion reaction intermediates (enhancing aldehyde reactivity) whilst simultaneously favouring the encapsulation and reduction of smaller aldehydes (which fit more easily inside the cage). Such dual action (enhancement of reactivity and size-selectivity) is reminiscent of the mode of operation of natural enzymes and highlights the tremendous promise of cage architectures as selective catalysts.

Welcome to talk about 105-13-5, If you have any questions, you can contact Paul, A; Shipman, MA; Onabule, DY; Sproules, S; Symes, MD or send Email.. Name: (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

When did you first realize you had a special interest and talent in105-13-5

COA of Formula: C8H10O2. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

I found the field of Chemistry very interesting. Saw the article Synthesis, Characterisation, and Determination of Physical Properties of New Two-Protonic Acid Ionic Liquid and its Catalytic Application in the Esterification published in 2021. COA of Formula: C8H10O2, Reprint Addresses Khaligh, NG (corresponding author), Univ Malaya, Inst Postgrad Studies, Nanotechnol & Catalysis Res Ctr, 3rd Floor,Block A, Kuala Lumpur 50603, Malaysia.. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol

A new ionic liquid was synthesised, and its chemical structure was elucidated by FT-IR, 1D NMR, 2D NMR, and mass analyses. Some physical properties, thermal behaviour, and thermal stability of this ionic liquid were investigated. The formation of a two-protonic acid salt namely 4,4′-trimethylene-N,N’-dipiperidinium sulfate instead of 4,4′-trimethylene-N,N’-dipiperidinium hydrogensulfate was evidenced by NMR analyses. The catalytic activity of this ionic liquid was demonstrated in the esterification reaction of n-butanol and glacial acetic acid under different conditions. The desired acetate was obtained in 62-88% yield without using a Dean-Stark apparatus under optimal conditions of 10 mol-% of the ionic liquid, an alcohol to glacial acetic acid mole ratio of 1.3 : 1.0, a temperature of 75-100 degrees C, and a reaction time of 4 h. alpha-Tocopherol (alpha-TCP), a highly efficient form of vitamin E, was also treated with glacial acetic acid in the presence of the ionic liquid, and O-acetyl-alpha-tocopherol (Ac-TCP) was obtained in 88.4% yield. The separation of esters was conducted during workup without the utilisation of high-cost column chromatography. The residue and ionic liquid were used in subsequent runs after the extraction of desired products. The ionic liquid exhibited high catalytic activity even after five runs with no significant change in its chemical structure and catalytic efficiency.

COA of Formula: C8H10O2. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What Kind of Chemistry Facts Are We Going to Learn About (4-Methoxyphenyl)methanol

Recommanded Product: (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Shahnavaz, Z; Zaharani, L; Khaligh, NG; Mihankhah, T; Johan, MR or send Email.

Recommanded Product: (4-Methoxyphenyl)methanol. Recently I am researching about VITAMIN-E, Saw an article supported by the University of Malaya, MalaysiaUniversiti Malaya [NANOCAT RU001-2020]. Published in CSIRO PUBLISHING in CLAYTON ,Authors: Shahnavaz, Z; Zaharani, L; Khaligh, NG; Mihankhah, T; Johan, MR. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol

A new ionic liquid was synthesised, and its chemical structure was elucidated by FT-IR, 1D NMR, 2D NMR, and mass analyses. Some physical properties, thermal behaviour, and thermal stability of this ionic liquid were investigated. The formation of a two-protonic acid salt namely 4,4′-trimethylene-N,N’-dipiperidinium sulfate instead of 4,4′-trimethylene-N,N’-dipiperidinium hydrogensulfate was evidenced by NMR analyses. The catalytic activity of this ionic liquid was demonstrated in the esterification reaction of n-butanol and glacial acetic acid under different conditions. The desired acetate was obtained in 62-88% yield without using a Dean-Stark apparatus under optimal conditions of 10 mol-% of the ionic liquid, an alcohol to glacial acetic acid mole ratio of 1.3 : 1.0, a temperature of 75-100 degrees C, and a reaction time of 4 h. alpha-Tocopherol (alpha-TCP), a highly efficient form of vitamin E, was also treated with glacial acetic acid in the presence of the ionic liquid, and O-acetyl-alpha-tocopherol (Ac-TCP) was obtained in 88.4% yield. The separation of esters was conducted during workup without the utilisation of high-cost column chromatography. The residue and ionic liquid were used in subsequent runs after the extraction of desired products. The ionic liquid exhibited high catalytic activity even after five runs with no significant change in its chemical structure and catalytic efficiency.

Recommanded Product: (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Shahnavaz, Z; Zaharani, L; Khaligh, NG; Mihankhah, T; Johan, MR or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Final Thoughts on Chemistry for C8H10O2

Recommanded Product: 105-13-5. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

An article 4-Aryl-1,4-Dihydropyridines as Potential Enoyl-Acyl Carrier Protein Reductase Inhibitors: Antitubercular Activity and Molecular Docking Study WOS:000629032900004 published article about BINDING MODE ANALYSIS; DIHYDROPYRIDINE DERIVATIVES; ANTIMOSQUITO PROPERTIES; MULTIDRUG-RESISTANT; LARVICIDAL ACTIVITY; INHA INHIBITORS; DESIGN; 1,4-DIHYDROPYRIDINES; POLYMORPHISM; DISCOVERY in [Venugopala, Katharigatta N.; Morsy, Mohamed A.; Aldhubiab, Bandar E.; Attimarad, Mahesh; Nair, Anroop B.; Sreeharsha, Nagaraja] King Faisal Univ, Coll Clin Pharm, Dept Pharmaceut Sci, Al Hasa 31982, Saudi Arabia; [Venugopala, Katharigatta N.; Mohanlall, Viresh] Durban Univ Technol, Dept Biotechnol & Food Technol, ZA-4001 Durban, South Africa; [Deb, Pran Kishore] Philadelphia Univ, Fac Pharm, Dept Pharmaceut Sci, Amman 19392, Jordan; [Pillay, Melendhran] Inkosi Albert Luthuli Cent Hosp, Dept Microbiol, Natl Hlth Lab Serv, KZN Acad Complex, ZA-4001 Durban, South Africa; [Chopra, Deepak] Indian Inst Sci Educ & Res Bhopal, Dept Chem, Bhopal By Pass Rd, Bhopal 462066, Madhya Pradesh, India; [Chandrashekharappa, Sandeep] GKVK, Inst Stem Cell Biol & Regenerat Med, TIFR, NCBS, Bangalore 560065, Karnataka, India; [Morsy, Mohamed A.] Menia Univ, Fac Med, Dept Pharmacol, El Minia 61511, Egypt; [Sreeharsha, Nagaraja] Vidya Siri Coll Pharm, Dept Pharmaceut, Off Sarjapura Rd, Bengaluru 560035, India; [Kandeel, Mahmoud] King Faisal Univ, Coll Vet Medi Cine, Dept Biomed Sci, Al Hasa 31982, Saudi Arabia; [Kandeel, Mahmoud] Kafrelsheikh Univ, Fac Vet Med, Dept Pharmacol, Kafrelsheikh 33516, Egypt; [Venugopala, Rashmi] Univ KwaZulu Natal, Dept Publ Hlth Med, Howard Coll Campus, ZA-4001 Durban, South Africa in 2021, Cited 93. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Recommanded Product: 105-13-5

Background: Tuberculosis remains one of the most deadly infectious diseases worldwide due to the emergence of multi-drug resistance (MDR) and extensively drug resistance (XDR) strains of Mycobacterium tuberculosis (MTB). Aims: Currently, available drugs are getting resistant and toxic. Hence, there is an urgent need for the development of potent molecules to treat tuberculosis. Materials and Methods: Herein, the screening of a total of eight symmetrical 1,4-dihydropyridine (1,4-DHP) derivatives (4a-4h) was carried out for whole-cell anti-TB activity against the susceptible H37Rv and MDR strains of MTB. Results and Discussion: Most of the compounds exhibited moderate to excellent activity against the susceptible H37Rv. Moreover, the most promising compound 4f (against H37Rv) having para-trifluoromethyl phenyl group at 4-position and bis para-methoxy benzyl ester group at 3- and 5-positions of 1,4- dihydropyridine pharmacophore, exhibited no toxicity, but demonstrated weak activity against MTB strains resistant to isoniazid and rifampicin. In light of the inhibitory profile of the title compounds, enoyl-acyl carrier protein reductase (InhA) appeared to be the appropriate molecular target. A docking study of these derivatives against InhA receptor revealed favorable binding interactions. Further, in silico predicted ADME properties of these compounds 4a-4h were found to be in the acceptable ranges, including satisfactory Lipinski’s rule of five, thereby indicating their potential as drug-like molecules. Conclusion: In particular, the 1,4-DHP derivative 4f can be considered an attractive lead molecule for further exploration and development of more potent anti-TB agents as InhA inhibitors.

Recommanded Product: 105-13-5. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What unique challenges do researchers face in 105-13-5

SDS of cas: 105-13-5. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Authors Kargar, PG; Bagherzade, G; Eshghi, H in ROYAL SOC CHEMISTRY published article about ONE-POT SYNTHESIS; RECOVERABLE NANO-CATALYST; FACILE SYNTHESIS; IONIC LIQUID; RECYCLABLE CATALYST; NATURAL PHOSPHATE; HIGHLY EFFICIENT; GREEN CHEMISTRY; SULFONIC-ACID; NANOPARTICLES in [Kargar, Pouya Ghamari; Bagherzade, Ghodsieh] Univ Birjand, Fac Sci, Dept Chem, Birjand 97175615, Iran; [Eshghi, Hossein] Ferdowsi Univ Mashhad, Fac Sci, Dept Chem, Mashhad, Razavi Khorasan, Iran in 2021, Cited 77. SDS of cas: 105-13-5. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

In this work, the new trinuclear manganese catalyst defined as Fe3O4@NFC@NNSM-Mn(iii) was successfully manufactured and fully characterized by different techniques, including FT-IR, XRD, TEM, SEM, EDX, VSM, and ICP analysis. There have been reports of the use of magnetic catalysts for the synthesis of xanthine derivatives. The critical potential interest in the present method include short reaction time, high yields, recyclability of the catalyst, easy workup, and the ability to sustain a variety of functional groups, which give economical as well as ecological rewards. Also, the synthesized catalyst was used as a recyclable trinuclear catalyst in alcohol oxidation reactions at 40 degrees C. The magnetic catalyst activity of Fe3O4@NFC@NNSM-Mn(iii) could be attributed to the synergistic effects of the catalyst Fe3O4@NFC@NNS-Mn(iii) with melamine. Employing a sustainable and safe low temperature, using an eco-friendly solvent, no need to use any additive, and long-term stability and magnetic recyclability of the catalyst for at least six successive runs are the advantages of the current protocol towards green chemistry. This protocol is a benign, environmentally friendly method for heterocycle synthesis.

SDS of cas: 105-13-5. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Machine Learning in Chemistry about C8H10O2

Formula: C8H10O2. Welcome to talk about 105-13-5, If you have any questions, you can contact Nguyen, NK; Ha, MT; Bui, HY; Trinh, QT; Tran, BN; Nguyen, VT; Hung, TQ; Dang, TT; Vu, XH or send Email.

Formula: C8H10O2. I found the field of Chemistry very interesting. Saw the article Magnetically recyclable CuFe2O4 catalyst for efficient synthesis of bis (indolyl)methanes using indoles and alcohols under mild condition published in 2021, Reprint Addresses Hung, TQ; Vu, XH (corresponding author), Vietnam Acad Sci & Technol, Inst Chem, 18 Hoang Quoc Viet, Hanoi, Vietnam.; Dang, TT (corresponding author), VNU Hanoi Univ Sci, Dept Chem, 19 Le Thanh Tong, Hanoi, Vietnam.; Vu, XH (corresponding author), Vietnam Petr Inst, 167 Trung Kinh Str, Hanoi, Vietnam.. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol.

Bis(3-indolyl)methanes (BIM) are highly valuable and appear in the core structure of many natural products and pharmacologically active compounds (anticancer, anti-inflammatory, antiobesity, antimetastatic, antimicrobial, etc.). Herein, we have disclosed an air stable and highly efficient CuFe2O4 heterogeneous catalyst for alkylation of indoles with alcohols to give bis(3-indolyl)methanes in very good yields. The CuFe2O4 catalyst has been found to be magnetically recycled at least five times without losing significant catalytic activity.

Formula: C8H10O2. Welcome to talk about 105-13-5, If you have any questions, you can contact Nguyen, NK; Ha, MT; Bui, HY; Trinh, QT; Tran, BN; Nguyen, VT; Hung, TQ; Dang, TT; Vu, XH or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Chemistry Milestones Of C8H10O2

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Category: alcohols-buliding-blocks

Category: alcohols-buliding-blocks. Authors Zhou, ZY; Xie, YN; Zhu, WZ; Zhao, HY; Yang, NJ; Zhao, GH in ELSEVIER published article about in [Zhou, Zhaoyu; Xie, Ya-Nan; Zhu, Wenze; Zhao, Hongying; Zhao, Guohua] Tongji Univ, Shanghai Tongji Hosp, Sch Chem Sci & Engn, Inst Translat Res, Shanghai 200092, Peoples R China; [Yang, Nianjun] Univ Siegen, Inst Mat Engn, D-57076 Siegen, Germany in 2021, Cited 55. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Hydrogen production can be promoted by replacing sluggish oxygen evolution reaction (OER) with a thermodynamically more favorable reaction, the primary oxidation reaction of benzyl alcohol to benzaldehyde. On a Bi2MoO6@TiO(2)NTA photocathode, the conversion of benzyl alcohol to benzaldehyde is realized with the selectivity of 100 %. This is originated from enhanced adsorption and activation of benzyl alcohol on this photoanode, as confirmed from tested by in situ FTIR techniques. The electrons generated during such a controllable and selective primary oxidation reaction is then utilized as the source for synergistical hydrogen production. The amount of generated hydrogen is then 5.5 times higher than that when OER is used. The efficiency for such hydrogen production is as high as 85 %. The proposed strategy combines solar energy and biomass for the efficient production of the valuable raw material – benzaldehyde as well as green energy source – hydrogen.

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Category: alcohols-buliding-blocks

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts