What Kind of Chemistry Facts Are We Going to Learn About 105-13-5

SDS of cas: 105-13-5. Welcome to talk about 105-13-5, If you have any questions, you can contact Yamamoto, Y; Ota, M; Kodama, S; Michimoto, K; Nomoto, A; Ogawa, A; Furuya, M; Kawakami, K or send Email.

Authors Yamamoto, Y; Ota, M; Kodama, S; Michimoto, K; Nomoto, A; Ogawa, A; Furuya, M; Kawakami, K in AMER CHEMICAL SOC published article about in [Yamamoto, Yuki; Ota, Miyuto; Kodama, Shintaro; Michimoto, Kazuki; Nomoto, Akihiro; Ogawa, Akiya] Osaka Prefecture Univ, Grad Sch Engn, Dept Appl Chem, Sakai, Osaka 5998531, Japan; [Furuya, Mitsunori; Kawakami, Kiminori] Mitsubishi Chem Corp, Sci & Innovat Ctr, Yokohama, Kanagawa 2278502, Japan in 2021, Cited 67. SDS of cas: 105-13-5. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

A green method for the oxidation of alcohols to carboxylic acids was developed using a novel co-catalytic system based on gold, silver, and copper catalysts. This reaction system was conducted under atmospheric oxygen in water and mild conditions to selectively oxidize 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid, as a building block for polyethylene furanoate, which is a 100% bio-based, future alternative to the petroleum-based polyethylene terephthalate. Furthermore, various primary alcohols were conveniently oxidized to their corresponding carboxylic acids in up to quantitative yields.

SDS of cas: 105-13-5. Welcome to talk about 105-13-5, If you have any questions, you can contact Yamamoto, Y; Ota, M; Kodama, S; Michimoto, K; Nomoto, A; Ogawa, A; Furuya, M; Kawakami, K or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

The Shocking Revelation of 105-13-5

Category: alcohols-buliding-blocks. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Category: alcohols-buliding-blocks. Authors Nkamba, DM; Wembodinga, G; Bernard, P; Ditekemena, J; Robert, A in BMC published article about in [Nkamba, Dalau Mukadi; Wembodinga, Gilbert; Ditekemena, John] Univ Kinshasa, Fac Med, Kinshasa Sch Publ Hlth, Kinshasa, DEM REP CONGO; [Nkamba, Dalau Mukadi; Robert, Annie] Univ Catholique Louvain UCLouvain, Inst Rech Expt & Clin IREC, Pole Epidemiol & Biostat, Clos Chapelle Aux Champs 30,Bte B1-30-13, B-1200 Brussels, Belgium; [Bernard, Pierre] Univ Catholique Louvain UCLouvain, Inst Rech Expt & Clin IREC, Pole Gynecol & Obstet, Brussels, Belgium in 2021, Cited 23. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

BackgroundPoor awareness of obstetric danger signs is a major contributing factor to delays in seeking obstetric care and hence to high maternal mortality and morbidity worldwide. We conducted the current study to assess the level of agreement on receipt of counseling on obstetric danger signs between direct observations of antenatal care (ANC) consultation and women’s recall in the exit interview. We also identified factors associated with pregnant women’s awareness of obstetric danger signs during pregnancy in the Democratic Republic of Congo (DRC)MethodsWe used data from the 2017-2018 DRC Service Provision Assessment survey. Agreement between the observation and woman’s recall was measured using Cohen’s kappa statistic and percent agreement. Multivariable Zero-Inflated Poisson (ZIP) regression was used to identify factors associated with the number of danger signs during pregnancy the woman knew.ResultsOn average, women were aware of 1.51.34 danger signs in pregnancy (range: 0 to 8). Agreement between observation and woman’s recall was 70.7%, with a positive agreement of 16.9% at the country level but ranging from 2.1% in Bandundu to 39.7% in Sud Kivu. Using multivariable ZIP analysis, the number of obstetric danger signs the women mentioned was significantly higher in multigravida women (Adj.IRR=1.38; 95% CI: 1.23-1.55), in women attending a private facility (Adj.IRR=1.15; 95% CI: 1.01-1.31), in women attending a subsequent ANC visit (Adj.IRR=1.11; 95% CI: 1.01-1.21), and in women counseled on danger signs during the ANC visit (Adj.IRR=1.19; 95% CI: 1.05-1.35). There was a regional variation in the awareness of danger signs, with the least mentioned signs in the middle and the most in the eastern provinces.ConclusionsOur findings indicated poor agreement between directly observed counseling and women’s reports that counseling on obstetric danger signs occurred during the current ANC visit. We found that province of residence, provision of counseling on obstetric danger signs, facility ownership, gravidity and the number of ANC visits were predictors of the awareness of obstetric danger signs among pregnant women. These factors should be considered when developing strategies aim at improving women’s awareness about obstetric danger signs in the DRC

Category: alcohols-buliding-blocks. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Downstream Synthetic Route Of C8H10O2

Product Details of 105-13-5. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Product Details of 105-13-5. Authors Luo, NH; Zhong, YH; Wen, HL; Shui, HL; Luo, RS in WILEY-V C H VERLAG GMBH published article about in [Luo, Nianhua; Zhong, Yuhong; Wen, Huiling; Shui, Hongling; Luo, Renshi] Gannan Med Univ, Sch Pharmaceut Sci, Ganzhou 341000, Jiangxi, Peoples R China in 2021, Cited 94. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Ketones are of great importance in synthesis, biology, and pharmaceuticals. This paper reports an iridium complexes-catalyzed cross-coupling of alcohols via hydrogen borrowing, affording a series of alpha-alkylated ketones in high yield (86 %-95 %) and chemoselectivities (>99 : 1). This methodology has the advantages of low catalyst loading (0.1 mol%) and environmentally benign water as the solvent. Studies have shown the amount of base has a great impact on chemoselectivities. Meanwhile, deuteration experiments show water plays an important role in accelerating the reduction of the unsaturated ketones intermediates. Remarkably, a gram-scale experiment demonstrates this methodology of iridium-catalyzed cross-coupling of alcohols has potential application in the practical synthesis of alpha-alkylated ketones.

Product Details of 105-13-5. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

How did you first get involved in researching 105-13-5

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Quality Control of (4-Methoxyphenyl)methanol

Quality Control of (4-Methoxyphenyl)methanol. In 2021 ORG LETT published article about REDUCTION; GAS; SF6; BENZOPHENONE; POTENTIALS; ENERGIES; ION in [Kim, Sungjin; Khomutnyk, Yaroslav; Bannykh, Anton; Nagorny, Pavel] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA in 2021, Cited 42. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

This study describes a new convenient method for the photocatalytic generation of glycosyl fluorides using sulfur(VI) hexafluoride as an inexpensive and safe fluorinating agent and 4,4′-dimethoxybenzophenone as a readily available organic photocatalyst. This mild method was employed to generate 16 different glycosyl fluorides, including the substrates with acid and base labile functionalities, in yields of 43%-97%, and it was applied in continuous flow to accomplish fluorination on an 7.7 g scale and 93% yield.

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Quality Control of (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Something interesting about (4-Methoxyphenyl)methanol

Application In Synthesis of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Padmanaban, S; Lee, Y; Yoon, S or send Email.

An article Chemoselective hydrogenation of alpha,beta-unsaturated carbonyl compounds using a recyclable Ru catalyst embedded on a bisphosphine based POP WOS:000609243700011 published article about MESOPOROUS MOLECULAR-SIEVE; METAL-SUPPORT INTERACTION; SELECTIVE HYDROGENATION; UNSATURATED ALDEHYDES; CINNAMYL ALCOHOL; ACTIVATED CARBON; HIGHLY EFFICIENT; CINNAMALDEHYDE; RUTHENIUM; COMPLEXES in [Padmanaban, Sudakar; Yoon, Sungho] Chung Ang Univ, Dept Chem, 84 Heukseok Ro, Seoul 06974, South Korea; [Padmanaban, Sudakar; Lee, Yunho] Seoul Natl Univ, Dept Chem, Seoul 08826, South Korea in 2021, Cited 77. Application In Synthesis of (4-Methoxyphenyl)methanol. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Selective hydrogenation of the carbonyl functional group of alpha,beta-unsaturated carbonyl compounds affords industrially important allylic alcohols. However, achieving the selective reduction of the carbonyl group in the presence of the activated olefinic group is challenging. Therefore, the development of a highly chemoselective, efficient, and recyclable catalyst for this transformation is greatly desirable from the industrial and environmental viewpoints. In this study, a Ru-immobilized bisphosphine-based porous organic polymer (Ru@PP-POP) was used as an efficient heterogeneous catalyst for chemoselective hydrogenation of cinnamaldehyde (CAL) to cinnamyl alcohol with high chemoselectivity (98%) and excellent recyclability. To the best of our knowledge, the catalyst, Ru@PP-POP showed a high turnover number (970) and a high turnover frequency (240h(1)) which is the best activity obtained using a phosphine based heterogeneous Ru-catalyst in this transformation. (C) 2020 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.

Application In Synthesis of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Padmanaban, S; Lee, Y; Yoon, S or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Our Top Choice Compound:(4-Methoxyphenyl)methanol

Welcome to talk about 105-13-5, If you have any questions, you can contact Mehrjoyan, F; Afshari, M or send Email.. Formula: C8H10O2

Formula: C8H10O2. In 2021 J MOL STRUCT published article about NICKEL FERRITE NANOPARTICLES; AEROBIC OXIDATION; MAGNETIC NANOPARTICLES; MECHANISM; ALDEHYDES; EFFICIENT; LIGAND in [Mehrjoyan, Forouzan] Islamic Azad Univ, Dept Chem, Ahvaz Branch, Ahvaz, Iran; [Afshari, Mozhgan] Islamic Azad Univ, Dept Chem, Shoushtar Branch, Shoushtar 6451741117, Iran in 2021, Cited 34. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

A new magnetically recoverable catalyst consisting of phenanthroline Cu(II) complex supported on nickel ferrite nanoparticles was prepared. The synthesized catalyst was characterized by Fourier transform in-frared spectroscopy, X-ray diffraction, transmission and scanning electron microscopes, thermogravimetry, energy dispersive X-ray spectroscopy, vibrating sample magnetometry and inductively coupled plasma. Supported copper complex used for solvent free oxidation of 1-phenyl ethanol as a model. Influence of the reaction parameters (kind of oxidant, amount of the catalyst, reaction time, solvent and reaction temperature) were studied. Because of the immobilized complex has been shown to be an efficient het-erogeneous catalyst for the selective oxidation of 1-phenyl ethanol to acetophenone (94% yield) by hydro-gen peroxide so this green approach extended to other benzylic alcohols. The catalyst had been reused 10 times with no significant loss of catalytic activity. SEM, EDX, XRD, and ICP analysis of reused catalyst indicated that the catalyst was stable after the reaction. (c) 2021 Published by Elsevier B.V.

Welcome to talk about 105-13-5, If you have any questions, you can contact Mehrjoyan, F; Afshari, M or send Email.. Formula: C8H10O2

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Chemistry Milestones Of C8H10O2

Safety of (4-Methoxyphenyl)methanol. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Safety of (4-Methoxyphenyl)methanol. I found the field of Chemistry very interesting. Saw the article Switchable Synthesis of alpha,alpha-Dihalomethyl and alpha,alpha,alpha-Trihalomethyl Ketones by Metal-Free Decomposition of Enaminone C=C Double Bond published in 2020, Reprint Addresses Liu, YY; Wan, JP (corresponding author), Jiangxi Normal Univ, Coll Chem & Chem Engn, Nanchang 330022, Jiangxi, Peoples R China.. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol.

The novel free radical-based cleavage of the enaminone C=C double bond is realized by using N-halosuccinimides (NXS) in the presence of benzoyl peroxide (BPO) with mild heating, enabling the tunable synthesis of alpha,alpha-dihalomethyl ketones and alpha,alpha,alpha-trihalomethyl ketones under different reaction conditions. The formation of these divergent products involving featured C=C double bond cleavage requires no any metal reagent, and represents one more practical example on the synthesis of poly halogenated methyl ketones via the functionalization of carbon-carbon bond.

Safety of (4-Methoxyphenyl)methanol. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Brief introduction of 105-13-5

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Safety of (4-Methoxyphenyl)methanol

Authors Epifanov, M; Mo, JY; Dubois, R; Yu, H; Sammis, GM in AMER CHEMICAL SOC published article about in [Epifanov, Maxim; Mo, Jia Yi; Dubois, Rudy; Yu, Hao; Sammis, Glenn M.] Univ British Columbia, Dept Chem, Columbia, BC V6T 1Z1, Canada in 2021, Cited 48. Safety of (4-Methoxyphenyl)methanol. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Sulfuryl fluoride is a valuable reagent for the one-pot activation and derivatization of aliphatic alcohols, but the highly reactive alkyl fluorosulfate intermediates limit both the types of reactions that can be accessed as well as the scope. Herein, we report the SO2F2-mediated alcohol substitution and deoxygenation method that relies on the conversion of fluorosulfates to alkyl halide intermediates. This strategy allows the expansion of SO2F2-mediated one-pot processes to include radical reactions, where the alkyl halides can also be exploited in the one-pot deoxygenation of primary alcohols under mild conditions (52-95% yield). This strategy can also enhance the scope of substitutions to nucleophiles that are previously incompatible with one-pot SO2F2-mediated alcohol activation and enables substitution of primary and secondary alcohols in 54-95% yield. Chiral secondary alcohols undergo a highly stereospecific (90-98% ee) double nucleophilic displacement with an overall retention of configuration.

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Safety of (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Extracurricular laboratory: Synthetic route of (4-Methoxyphenyl)methanol

SDS of cas: 105-13-5. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

SDS of cas: 105-13-5. Authors Xia, YY; Lv, QY; Yuan, H; Wang, JY in SPRINGER INTERNATIONAL PUBLISHING AG published article about in [Xia, Yu-Yan; Lv, Qing-Yang; Yuan, Hua; Wang, Jia-Yi] Wuhan Inst Technol, Minist Educ, Key Lab Green Chem Proc, Wuhan 430073, Peoples R China in 2021, Cited 46. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

An efficient method for catalyzing the ammoxidation of aromatic alcohols to aromatic nitriles was developed, in which a new heterogeneous catalyst based on transition metal elements was employed, the new catalyst was named Co-[Bmim]Br/C-700 and then characterized by X-ray photo-electronic spectroscopy, transmission electron microscope and X-ray diffraction. The reaction was carried out by two consecutive dehydrogenations under the catalysis of Co-[Bmim]Br/C-700, which catalytically oxidized the alcohol to the aldehyde, and then the aldehyde was subjected to ammoxidation to the nitrile. The catalyst system was suitable for a wide range of substrates and nitriles obtained in high yields, especially, the conversion rate of benzyl alcohol, 4-methoxybenzyl alcohol, 4-chlorobenzyl alcohol and 4-nitrobenzyl alcohol reached 100%. The substitution of ammonia and oxygen for toxic cyanide to participate in the reaction accords with the theory of green chemistry.

SDS of cas: 105-13-5. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

New explortion of (4-Methoxyphenyl)methanol

Welcome to talk about 105-13-5, If you have any questions, you can contact Padmanaban, S; Gunasekar, GH; Yoon, S or send Email.. SDS of cas: 105-13-5

Authors Padmanaban, S; Gunasekar, GH; Yoon, S in AMER CHEMICAL SOC published article about RUTHENIUM PINCER COMPLEX; POROUS ORGANIC POLYMER; SELECTIVE HYDROGENATION; HOMOGENEOUS HYDROGENATION; UNSATURATED ALDEHYDES; CYCLIC CARBONATES; ACTIVATED CARBON; SCALE SYNTHESIS; EFFICIENT; METHANOL in [Padmanaban, Sudakar; Yoon, Sungho] Chung Ang Univ, Dept Chem, Seoul 06974, South Korea; [Padmanaban, Sudakar] Seoul Natl Univ, Dept Chem, Seoul 08826, South Korea; [Gunasekar, Gunniya Hariyanandam] Korea Inst Sci & Technol, Clean Energy Res Ctr, Seoul 136791, South Korea in 2021, Cited 95. SDS of cas: 105-13-5. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

In this study, a commercially available homogeneous pincer-type complex, Ru-Macho, was directly heterogenized via the Lewis acid-catalyzed Friedel-Crafts reaction using dichloromethane as the cross-linker to obtain a heterogeneous, pincer-type Ru porous organometallic polymer (Ru-Macho-POMP) with a high surface area. Notably, Ru-Macho-POMP was demonstrated to be an efficient heterogeneous catalyst for the chemoselective hydrogenation of alpha,beta-unsaturated carbonyl compounds to their corresponding allylic alcohols using cinnamaldehyde as a model compound. The Ru-Macho-POMP catalyst showed a high turnover frequency (TOF = 920 h(-1)) and a high turnover number (TON = 2750), with high chemoselectivity (99%) and recyclability during the selective hydrogenation of alpha, beta-unsaturated carbonyl compounds.

Welcome to talk about 105-13-5, If you have any questions, you can contact Padmanaban, S; Gunasekar, GH; Yoon, S or send Email.. SDS of cas: 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts