Cibanal, Irene Laura et al. published their research in European Journal of Plant Pathology in 2022 | CAS: 499-75-2

5-Isopropyl-2-methylphenol (cas: 499-75-2) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Recommanded Product: 499-75-2

Propolis extract combined with oregano essential oil applied to lima bean seeds against Sclerotinia sclerotiorum was written by Cibanal, Irene Laura;Fernandez, Leticia Andrea;Rodriguez, Silvana Andrea;Pellegrini, Cecilia Noemi;Gallez, Liliana Maria. And the article was included in European Journal of Plant Pathology in 2022.Recommanded Product: 499-75-2 This article mentions the following:

In this study, propolis extract (EPE) and oregano essential oil (OEO), both natural products with different bioactive compounds, were evaluated in vitro and in vivo against Sclerotinia sclerotiorum. This phytopathogen is important worldwide as it can contaminate seeds and infect seedlings of many species. Antifungal susceptibility assays on culture media revealed that EPE and OEO were highly active against this phytopathogen, both individually and combined. EPE showed a fungistatic dose-dependent effect, acting mainly through diffusion, while OEO completely prevented mycelial growth at very low concentrations, with a combination of vapor and diffusion activity. Interestingly, OEO was more effective than EPE, as their min. inhibitory concentrations were 0.39μl/mL and 5μl/mL, resp. Combinations of EPE and OEO showed, depending on the doses, additive or synergistic antifungal effects. In the in vivo trial, dilutions of EPE and OEO made in sterile distilled water (SDW) were tested through a pathosystem with lima bean seeds and S. sclerotiorum. Seeds soaked in formulations with 40% EPE + 12% OEO + 48% SDW, and 20% EPE + 6% OEO + 74% SDW reduced disease incidence of 40% and 60% resp., significantly decreased severity, with a min. phytotoxic effect. This study strengthens previous work showing the antifungal action of EPE and OEO against S. sclerotiorum, and, as a main goal, highlights their potential for the development of biofungicides to protect lima bean seeds. In the experiment, the researchers used many compounds, for example, 5-Isopropyl-2-methylphenol (cas: 499-75-2Recommanded Product: 499-75-2).

5-Isopropyl-2-methylphenol (cas: 499-75-2) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Recommanded Product: 499-75-2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Allegretti, Marcello et al. published their research in Journal of Medicinal Chemistry in 2005 | CAS: 59960-32-6

2-(3-(Hydroxy(phenyl)methyl)phenyl)propanoic acid (cas: 59960-32-6) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Formula: C16H16O3

2-Arylpropionic CXC Chemokine Receptor 1 (CXCR1) Ligands as Novel Noncompetitive CXCL8 Inhibitors was written by Allegretti, Marcello;Bertini, Riccardo;Cesta, Maria Candida;Bizzarri, Cinzia;Di Bitondo, Rosa;Di Cioccio, Vito;Galliera, Emanuela;Berdini, Valerio;Topai, Alessandra;Zampella, Giuseppe;Russo, Vincenzo;Di Bello, Nicoletta;Nano, Giuseppe;Nicolini, Luca;Locati, Massimo;Fantucci, Piercarlo;Florio, Saverio;Colotta, Francesco. And the article was included in Journal of Medicinal Chemistry in 2005.Formula: C16H16O3 This article mentions the following:

The CXC chemokine CXCL8/IL-8 plays a major role in the activation and recruitment of polymorphonuclear (PMN) cells at inflammatory sites. CXCL8 activates PMNs by binding the seven-transmembrane (7-TM) G-protein-coupled receptors CXC chemokine receptor 1 (CXCR1) and CXC chemokine receptor 2 (CXCR2). (R)-Ketoprofen (1) was previously reported to be a potent and specific noncompetitive inhibitor of CXCL8-induced human PMNs chemotaxis. The authors report here mol. modeling studies showing a putative interaction site of 1 in the TM region of CXCR1. The binding model was confirmed by alanine scanning mutagenesis and photoaffinity labeling experiments The mol. model driven medicinal chem. optimization of 1 led to a new class of potent and specific inhibitors of CXCL8 biol. activity. Among these, repertaxin was selected as a clin. candidate drug for prevention of postischemia reperfusion injury. In the experiment, the researchers used many compounds, for example, 2-(3-(Hydroxy(phenyl)methyl)phenyl)propanoic acid (cas: 59960-32-6Formula: C16H16O3).

2-(3-(Hydroxy(phenyl)methyl)phenyl)propanoic acid (cas: 59960-32-6) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Formula: C16H16O3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Novato, Tatiane Pinheiro et al. published their research in Veterinary Parasitology in 2022 | CAS: 499-75-2

5-Isopropyl-2-methylphenol (cas: 499-75-2) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.COA of Formula: C10H14O

Acaricidal activity of carvacrol and thymol on acaricide-resistant Rhipicephalus microplus (Acari: Ixodidae) populations and combination with cypermethrin: Is there cross-resistance and synergism? was written by Novato, Tatiane Pinheiro;Milhomem, Marlise Neves;Marchesini, Paula Barroso Cruz;Coutinho, Ana Lucia;Silva, Isabela Santos;de Souza Perinotto, Wendell Marcelo;de Azevedo Prata, Marcia Cristina;Ferreira, Lorena Lopes;Lopes, Welber Daniel Zanetti;Costa-Junior, Livio Martins;de Oliveira Monteiro, Caio Marcio. And the article was included in Veterinary Parasitology in 2022.COA of Formula: C10H14O This article mentions the following:

This study evaluated the acaricidal activity of thymol and carvacrol on Rhipicephalus microplus populations with different resistance profiles and investigated the synergistic effect of combinations of these monoterpenes with cypermethrin. The adult immersion test (AIT) was used to characterize the susceptibility of tick populations (45 field populations) to synthetic acaricides: deltamethrin, amitraz and chlorfenvinphos. The larval packet test (LPT) was used to determine the LC50 values for thymol (25 tick populations) and carvacrol (20 tick populations). The susceptible strain Porto Alegre (POA) was used as a reference for calculating the resistance ratio (RR). Subsequently, larval immersion tests (LIT) were performed with combinations of cypermethrin with thymol or carvacrol to assess a synergistic effect. In the AIT, deltamethrin showed efficacy > 90% in one (2.2%) population tested (mean: 12.1 and 11.1 for populations 1-25 and 26-40, resp.), whereas amitraz and chlorfenvinphos showed efficacy > 90% for two (4.4%) populations (mean: 61.3 and 47.3 for populations 1-25 and 26-40, resp.) and eight (17.7%) populations (mean: 69.7 and 59.7 for populations 1-25 and 26-40, resp.). In the LPT, the LC50 values for thymol and carvacrol varied from 0.67 to 2.12 mg/mL and 0.55-3.21 mg/mL, with an average LC50 for populations of 1.49 and 1.75 mg/mL, resp. For thymol, no resistance was observed in any of the populations, values of RR50 > 1.5. There was no correlation between the LC50 values for thymol and the efficacy of the chem. acaricides tested. Regarding carvacrol, for only one tick population had the value of RR50 > 1.5, indicating an incipient resistance. No correlation was observed between the LC50 values for carvacrol and the efficacy of tested acaricides. The combination of thymol and carvacrol with cypermethrin showed a synergistic effect in the resistant population (Jaguar – thymol 4.19 and carvacrol 3.67), and no synergistic interaction were showed in the susceptible population. Answering the questions we conclude that: 1 – The comparison between the LC50 values for thymol and carvacrol in field populations and the susceptible strain POA suggests the absence of cross-resistance (ticks and terpenes), and the differences between the LC50 values for thymol and carvacrol in the different R. microplus populations are inherent to the characteristics of each population tested; 2 – the combination of thymol or carvacrol with cypermethrin showed a synergistic effect with different activity according to the population of ticks. In the experiment, the researchers used many compounds, for example, 5-Isopropyl-2-methylphenol (cas: 499-75-2COA of Formula: C10H14O).

5-Isopropyl-2-methylphenol (cas: 499-75-2) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.COA of Formula: C10H14O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Itoh, Ken-ichi et al. published their research in Biotechnology Letters in 2008 | CAS: 120121-01-9

(R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Synthetic Route of C8H9ClO

Stereoselective oxidation of racemic 1-arylethanols by basil cultured cells of Ocimum basilicum cv. Purpurascens was written by Itoh, Ken-ichi;Nakamura, Kaoru;Utsukihara, Takamitsu;Sakamaki, Hiroshi;Horiuchi, C. Akira. And the article was included in Biotechnology Letters in 2008.Synthetic Route of C8H9ClO This article mentions the following:

The biotransformation of racemic 1-phenylethanol (30 mg) with plant cultured cells of basil (Ocimum basilicum cv. Purpurascens, 5 g wet wt) by shaking 120 rpm at 25°C for 7 days in the dark gave (R)-(+)-1-phenylethanol and acetophenone in 34 and 24% yields, resp. The biotransformation can be applied to other 1-arylethanols and basil cells oxidized the (S)-alcs. to the corresponding ketones remaining the (R)-alcs. in excellent ee. In the experiment, the researchers used many compounds, for example, (R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9Synthetic Route of C8H9ClO).

(R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Synthetic Route of C8H9ClO

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Menger, Frank et al. published their research in Journal of Hazardous Materials in 2021 | CAS: 1777-82-8

(2,4-Dichlorophenyl)methanol (cas: 1777-82-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Application of 1777-82-8

Suspect screening based on market data of polar halogenated micropollutants in river water affected by wastewater was written by Menger, Frank;Ahrens, Lutz;Wiberg, Karin;Gago-Ferrero, Pablo. And the article was included in Journal of Hazardous Materials in 2021.Application of 1777-82-8 This article mentions the following:

Wastewater treatment plants (WWTPs) are known point sources of contaminants of emerging concern (CECs) to the aquatic environment, but current knowledge is mostly limited to well-known chem. structures. In this study, we sought to identify unknown CECs polluting the aquatic environment through a novel suspect screening approach for organohalogens, i.e. organic halogenated mols. often toxic and resistant to transformation and characterised as persistent organic pollutants (POPs). Surface water samples were collected with passive samplers in the Fyris River catchment (Uppsala, Sweden), analyzed using liquid chromatog. high-resolution mass spectrometry (LC-HRMS) and screened for organohalogens using a suspect screening approach based on market data obtained from a regulatory authority. Thirteen suspects from very different application areas were confirmed or tentatively identified with high confidence, including seven previously unknown structures (diflufenican, chlorzoxazone, 3-(3,4-dichlorophenyl)-1,1-dimethylurea, 2,4-disulfamyl-5-trifluoromethylaniline, 5-amino-2-chlorotoluene-4-sulfonic acid, perfluoropentane-1-sufonic acid, (2-chlorophenyl)(hydroxy)methanesulfonic acid). Spatiotemporal occurrence patterns were detected, which helped to understand the usage pattern of the chems. and pinpoint potential pollution sources, e.g. specific WWTPs in the catchment. Several of the newly identified structures had virtually no information publicly available and were detected years after their last registered use, which highlights the knowledge gaps and concerns about POPs. In the experiment, the researchers used many compounds, for example, (2,4-Dichlorophenyl)methanol (cas: 1777-82-8Application of 1777-82-8).

(2,4-Dichlorophenyl)methanol (cas: 1777-82-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Application of 1777-82-8

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Saleh, Elham S. E. et al. published their research in Journal of Animal Physiology and Animal Nutrition in 2022 | CAS: 137-08-6

Calcium (R)-3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanoate (cas: 137-08-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.COA of Formula: C18H32CaN2O10

Effect of dietary protease supplementation on growth performance, water quality, blood parameters and intestinal morphology of Nile tilapia (Oreochromis niloticus) was written by Saleh, Elham S. E.;Tawfeek, Samar S.;Abdel-Fadeel, Asmaa A. A.;Abdel-Daim, Asmaa S. A.;Abdel-Razik, Abdel-Razik H.;Youssef, Ibrahim M. I.. And the article was included in Journal of Animal Physiology and Animal Nutrition in 2022.COA of Formula: C18H32CaN2O10 This article mentions the following:

This study was conducted to evaluate the effect of using protease in diets of Nile tilapia on growth performance, water quality, blood parameters and intestinal morphol. The cost of these diets and their return on fish performance was calculated A total of 360 fish were randomly allocated into four groups with triplicates (30 fish per replicate). Four diets were formulated; two controls (without protease supplementation) and two exptl. diets (supplemented with protease). The first control diet contained the normal protein requirement (30% CP; control +ve), while the second control had a low protein content (29% CP; control -ve). The third diet was supplemented with protease at a dose of 500 g/ton, and its CP content was reduced to 29.0%, by reducing the fish meal content. The fourth diet contained the same CP level as the first control (30%) and supplemented with 250 g protease per ton feed. The experiment lasted for 14 wk. The results showed that body weight and length, weight gain, specific growth rate, feed intake and feed conversion efficiency in the control -ve group (low CP) supplemented with protease were similar (p > 0.05) to that of the control +ve with normal CP content. However, these performance parameters were lower (p < 0.05) in fish fed low CP diet without protease supplementation. Providing protease to the control +ve diet improved all measured performance indexes. The ammonia and nitrite concentrations of the water were reduced (p < 0.05) in control -ve and protease-supplemented groups. The height and width of intestinal villi were increased (p < 0.05) in fish fed diets containing protease. The inclusion of protease reduced the diet cost and also the feed cost of fish weight gain. In conclusion, supplementation of protease can improve the productive performance of fish, spare dietary protein and produce economical diets. Moreover, it can help in improving the water quality of fish via lowering the ammonia and nitrite contents, or through increasing the degradation of dietary protein. In the experiment, the researchers used many compounds, for example, Calcium (R)-3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanoate (cas: 137-08-6COA of Formula: C18H32CaN2O10).

Calcium (R)-3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanoate (cas: 137-08-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.COA of Formula: C18H32CaN2O10

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Cioffi, Christopher L. et al. published their research in Journal of Medicinal Chemistry in 2020 | CAS: 142253-56-3

1-Boc-Azetidine-3-yl-methanol (cas: 142253-56-3) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Application In Synthesis of 1-Boc-Azetidine-3-yl-methanol

Discovery of Bispecific Antagonists of Retinol Binding Protein 4 That Stabilize Transthyretin Tetramers: Scaffolding Hopping, Optimization, and Preclinical Pharmacological Evaluation as a Potential Therapy for Two Common Age-Related Comorbidities was written by Cioffi, Christopher L.;Muthuraman, Parthasarathy;Raja, Arun;Varadi, Andras;Racz, Boglarka;Petrukhin, Konstantin. And the article was included in Journal of Medicinal Chemistry in 2020.Application In Synthesis of 1-Boc-Azetidine-3-yl-methanol This article mentions the following:

Accumulation of cytotoxic lipofuscin bisretinoids may contribute to atrophic age-related macular degeneration (AMD) pathogenesis. Retinal bisretinoid synthesis depends on the influx of serum all-trans-retinol delivered via a tertiary retinol binding protein 4 (RBP4)-transthyretin (TTR)-retinol complex. We previously identified selective RBP4 antagonists that dissociate circulating RBP4-TTR-retinol complexes, reduce serum RBP4 levels, and inhibit bisretinoid synthesis in models of enhanced retinal lipofuscinogenesis. However, the release of TTR by selective RBP4 antagonists may be associated with TTR tetramer destabilization and, potentially, TTR amyloid formation. We describe herein the identification of bispecific RBP4 antagonist-TTR tetramer kinetic stabilizers. Standout analog I possesses suitable potency for both targets, significantly lowers mouse plasma RBP4 levels, and prevents TTR aggregation in a gel-based assay. This new class of bispecific compounds may be especially important as a therapy for dry AMD patients who have another common age-related comorbidity, senile systemic amyloidosis, a nongenetic disease associated with wild-type TTR misfolding. In the experiment, the researchers used many compounds, for example, 1-Boc-Azetidine-3-yl-methanol (cas: 142253-56-3Application In Synthesis of 1-Boc-Azetidine-3-yl-methanol).

1-Boc-Azetidine-3-yl-methanol (cas: 142253-56-3) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Application In Synthesis of 1-Boc-Azetidine-3-yl-methanol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Debnath, Mamita et al. published their research in Free Radicals and Antioxidants in 2021 | CAS: 10083-24-6

(E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol (cas: 10083-24-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Recommanded Product: (E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol

Anti-Alzheimer′s potential of different varieties of Piper betle leaves and molecular docking analyses of metabolites was written by Debnath, Mamita;Das, Susmita;Bhowmick, Shovonlal;Karak, Swagata;Saha, Achintya;De, Bratati. And the article was included in Free Radicals and Antioxidants in 2021.Recommanded Product: (E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol This article mentions the following:

Introduction: Acetylcholinesterase inhibitors are used to prevent symptoms of Alzheimer′s disease which is initiated due to oxidative stress. Piper betle L. is a tropical evergreen perennial vine whose leaves are widely consumed as masticator in Asia and has medicinal properties. Objectives: The present study is aimed to investigate acetylcholinesterase inhibitory property of methanolic extracts of different varieties of Piper betle leaves and chemometrically identify different bioactive ingredients in vitro and in silico. Materials and Methods: Methanol extracts of the leaves collected in Feb. and Oct. from eight varieties of P. betle (Chhanchi, Bagerhati, Manikdanga, Kalibangla, Bangla, Ghanagete, Meetha and Haldi) were studied for acetylcholinesterase inhibitory properties. Chem. components were analyzed by Gas Chromatog. -Mass spectrometry and High Performance Thin Layer Chromatog. Active metabolites were identified chemometrically. The activities were proved in vitro and in silico. Results: All the extracts inhibited acetylcholinesterase. Statistical anal. suggested that several phenolic compounds were correlated to anti-cholinesterase activity. Piceatannol, hydroxychavicol, benzene-1,2,4-triol, and 4-methylcatechol are reported here to have such enzyme inhibitory properties. These four small mols. were further subjected to mol. docking anal. to explore their binding mechanism with the acetylcholinesterase enzyme. All the four small mols. are found to interact with the targeted enzyme in similar fashion like the mol. interactions observed for the standard inhibitor, Donepezil, at the active site of acetylcholiesterase. Conclusion: Thus, consumption of P. betle leaves may have a beneficial effect in the prevention and treatment of this neurodegenerative disease. In the experiment, the researchers used many compounds, for example, (E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol (cas: 10083-24-6Recommanded Product: (E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol).

(E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol (cas: 10083-24-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Recommanded Product: (E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Cheng, Yaran et al. published their research in Journal of Colloid and Interface Science in 2023 | CAS: 57-55-6

1,2-Propanediol (cas: 57-55-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Electric Literature of C3H8O2

Magnetically-separable acid-resistant CoFe2O4@Polymer@MIL-100 core-shell catalysts for the acetalization of benzaldehyde and methanol was written by Cheng, Yaran;Chen, Jing;Wang, Tong;Wu, Qin;Shi, Daxin;Zhang, Yaoyuan;Chen, Kangcheng;Li, Hansheng. And the article was included in Journal of Colloid and Interface Science in 2023.Electric Literature of C3H8O2 This article mentions the following:

Novel reusable acid-resistant magnetic polymer nanospheres-immobilized MIL-100 (CoFe2O4@Polymer@MIL-100) catalyst was prepared by a layer-by-layer method to achieve a controllable structure. The obtained core-shell catalyst consisted of modified magnetic nanoparticles as the core, a carboxylic-functionalized polymer as the protective layer, and an MIL-100 shell as the active catalytic layer by chem. bonds on the polymer. The catalysts showed good stability, good magnetic saturation, and acid corrosion resistance. The thickness of the MIL-100 shell could be adjusted by controlling the metal salt concentration and the number of layer-by-layer cycles. Nano-sized MIL-100 showed better mass transfer efficiency and catalytic activity. A conversion of 97.7% after 10 min was observed during acetalization when using CoFe2O4@Polymer@MIL-100 as the catalyst. CoFe2O4@Polymer@MIL-100 could be reused at least five times. The use of a polymer layer on CoFe2O4@Polymer@MIL-100 prevented acidic ligands from corroding the magnetic core. Chem. bonds between MIL-100 and functional magnetic polymer cores improved the catalyst′s stability. CoFe2O4@Polymer@MIL-100 exhibited high activity, excellent stability, and easy magnetic separation In the experiment, the researchers used many compounds, for example, 1,2-Propanediol (cas: 57-55-6Electric Literature of C3H8O2).

1,2-Propanediol (cas: 57-55-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Electric Literature of C3H8O2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

de Farias Marques, Antonia Dayane Jenyffer et al. published their research in Food Chemistry in 2022 | CAS: 3391-86-4

Oct-1-en-3-ol (cas: 3391-86-4) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Synthetic Route of C8H16O

Oxidative stability of chicken burgers using organic coffee husk extract was written by de Farias Marques, Antonia Dayane Jenyffer;de Lima Tavares, Jerffeson;de Carvalho, Leila Moreira;Leite Abreu, Thaianaly;Alves Pereira, Deyse;Moreira Fernandes Santos, Miriane;Suely Madruga, Marta;de Medeiros, Lorena Lucena;Kenia Alencar Bezerra, Taliana. And the article was included in Food Chemistry in 2022.Synthetic Route of C8H16O This article mentions the following:

The antioxidant capacity of organic coffee husk extract (Coffee arabica L.) added to chicken burgers was evaluated. Two formulations were prepared: with addition of the extract (100 and 200 ppm CAE/kg), in addition to control formulations without the addition of antioxidant, and with the addition of synthetic antioxidant. The products were characterized by phys. and chem. anal. and analyzed for oxidative stability during 45 days of storage under freezing. The addition of extract in the proportion of 200 ppm CAE/kg of hamburger revealed efficacy against lipid oxidation equivalent to treatment with a synthetic antioxidant. As for protein oxidation, there was no pro or antioxidant influence in the treatments. The addition of organic coffee husk extract to chicken hamburgers is thus indicated, being considered as a potential natural additive. In addition, the use of coffee husks helps to minimize the lager amounts of agro-industrial byproducts generated by the coffee industry. In the experiment, the researchers used many compounds, for example, Oct-1-en-3-ol (cas: 3391-86-4Synthetic Route of C8H16O).

Oct-1-en-3-ol (cas: 3391-86-4) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Synthetic Route of C8H16O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts