Bachmann, M. et al. published their research in Animal Feed Science and Technology in 2022 | CAS: 57-55-6

1,2-Propanediol (cas: 57-55-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Computed Properties of C3H8O2

Ensiling and thermic treatment effects on nutrient content, protein solubility, and in vitro fermentation of partial crop faba beans was written by Bachmann, M.;Okon, P.;Blunk, C.;Kuhnitzsch, C.;Martens, S. D.;Steinhoefel, O.;Zeyner, A.. And the article was included in Animal Feed Science and Technology in 2022.Computed Properties of C3H8O2 This article mentions the following:

Legumes such as faba beans have a great potential to create local, independent, and high-quality protein resources for ruminant nutrition. Suitable methods for cost- and energy-effective preservation and protein stabilization against rapid fermentation in the rumen play an important role. Partial crop faba beans harvested with 500 or 708 g dry matter (DM)/kg were ensiled, toasted (160°C, 60 min), or ensiled and toasted and it was investigated how this affects nutrient composition, protein solubility, carbohydrate fermentation, and in vitro organic matter digestibility (IVOMD). Non-protein nitrogen (NPN) concentrations increased and true protein (TP) concentrations decreased after ensiling, depending strongly on DM concentration of the plant (i.e., on maturity) – in NPN, from 15% to 35% (P < 0.001) and from 16% to 21% of crude protein (CP) (P > 0.05), and in TP, from 85% to 65% and from 83% to 79% of CP with 500 and 708 g DM/kg, resp. (P > 0.05) – whereas concentrations of soluble protein did not increase as much as expected. Toasting reduced soluble protein concentration in native faba beans from 56% to 29% and from 54% to 40% of CP with 500 and 708 g DM/kg, resp. (P < 0.001) and in ensiled faba beans from 58% to 38% and from 60% to 34% of CP with 500 and 708 g DM/kg, resp., compared to the native material (P < 0.001). Ensiling and toasting slightly affected other crude nutrient or metabolizable energy concentrations, carbohydrate fermentation, and IVOMD. In the experiment, the researchers used many compounds, for example, 1,2-Propanediol (cas: 57-55-6Computed Properties of C3H8O2).

1,2-Propanediol (cas: 57-55-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Computed Properties of C3H8O2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Hou, Wenpeng et al. published their research in Plant and Soil in 2021 | CAS: 10083-24-6

(E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol (cas: 10083-24-6) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Related Products of 10083-24-6

Metabolomics insights into the mechanism by which Epichloe gansuensis endophyte increased Achnatherum inebrians tolerance to low nitrogen stress was written by Hou, Wenpeng;Wang, Jianfeng;Christensen, Michael J.;Liu, Jie;Zhang, Yongqiang;Liu, Yinglong;Cheng, Chen. And the article was included in Plant and Soil in 2021.Related Products of 10083-24-6 This article mentions the following:

Epichloe gansuensis increases the tolerance of host plants to abiotic stress. However, little is known about the mechanism by which E. gansuensis improves grass growth under low nitrogen availability stress. Achnatherum inebrians with E. gansuensis (E+) and without E. gansuensis (E-) were treated with modified 1/2 Hoagland containing 0.01 mM (low N) or 7.5 mM N (normal level) for 18 wk. After 18 wk of treatment with N, the dry weight of E+ and E- plants were measured, and the metabolomics anal. of leaves and roots grown under two different N concentrations was conducted with GS-MS to determine differential metabolites and metabolic pathways. E+ A. inebrians had higher dry weight of leaves and roots compared to the E- A. inebrians under low N stress. E. gansuensis increased the tolerance of A. inebrians to low N stress by its capability to increase the content of organic acids (salicylic acid and 3-hydroxypropionic acid) and glucose-6-phosphate in leaves, and E. gansuensis increased the content of fatty acids (linolenic acid and oleic acid) and amino acids (glycine and 4-aminobutyric acid) in roots under low N stress. Finally, E. gansuensis reprogramed the metabolic pathway of amino acids of host grasses to adapt to the different N concentration Our results reveal the chem. mechanism by which E. gansuensis enhances the tolerance of host grasses to low N, and provide the theor. basis for utilizing E. gansuensis, improving of grasses and crops, and for developing new germplasm for low-N tolerant grasses. In the experiment, the researchers used many compounds, for example, (E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol (cas: 10083-24-6Related Products of 10083-24-6).

(E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol (cas: 10083-24-6) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Related Products of 10083-24-6

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Fattahi, Nazir et al. published their research in RSC Advances in 2022 | CAS: 2216-51-5

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol (cas: 2216-51-5) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Application of 2216-51-5

Novel deep eutectic solvent-based liquid phase microextraction for the extraction of estrogenic compounds from environmental samples was written by Fattahi, Nazir;Shamsipur, Mojtaba;Nematifar, Ziba;Babajani, Nasrin;Moradi, Masoud;Soltani, Shahin;Akbari, Shahram. And the article was included in RSC Advances in 2022.Application of 2216-51-5 This article mentions the following:

Steroid hormones, such as estrone (E1), 17β-estradiol (E2), 17β-ethinylestradiol (EE2) and estriol (E3) are a group of lipophilic active substances, synthesized biol. from cholesterol or chem. A pH-switchable hydrophobic deep eutectic solvent-based liquid phase microextraction (DES-LPME) technique was established and combined with gas chromatog.-mass spectroscopy for the determination of estrogenic compounds in environmental water and wastewater samples. A DES was synthesized using l-menthol as HBA and (1S)-(+)-camphor-10-sulfonic acid (CSA) as HBD, and used as a green extraction solvent. By adjusting the pH of the solution, the unique behavior of the DES in the phase transition and extraction of the desired analytes was investigated. The homogenization process of the mixture is done only by manual shaking in less than 30 s and the phase separation is done only by changing the pH and without centrifugation. Some effective parameters on the extraction and derivatization, such as molar ratio of DES components, DES volume, KOH concentration, HCl volume, salt addition, extraction and derivatization time and derivatization prior or after extraction were studied and optimized. Under the optimum conditions, relative standard deviation (RSD) values for intra-day and inter-day of the method based on 7 replicate measurements of 20 ng L-1 of estrogenic compounds and 10 ng L-1 for internal standard in different samples were in the range of 2.2-4.6% and 3.9-5.7%, resp. The calibration graphs were linear in the range of 0.5-100 ng L-1 and the limits of detection (LODs) were in the range of 0.2-1.0 ng L-1. The relative recoveries of environmental water and wastewater samples which have been spiked with different levels of target compounds were 91.0-108.8%. In the experiment, the researchers used many compounds, for example, (1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol (cas: 2216-51-5Application of 2216-51-5).

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol (cas: 2216-51-5) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Application of 2216-51-5

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Lu, Yuanyuan et al. published their research in Tetrahedron in 2022 | CAS: 873-76-7

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Quality Control of (4-Chlorophenyl)methanol

A reusable MOF supported single-site nickel-catalyzed direct N-alkylation of anilines with alcohols was written by Lu, Yuanyuan;Chai, Huining;Yu, Kun;Huang, Chaonan;Li, Yujie;Wang, Jinyu;Ma, Jiping;Tan, Weiqiang;Zhang, Guangyao. And the article was included in Tetrahedron in 2022.Quality Control of (4-Chlorophenyl)methanol This article mentions the following:

A highly selective and reusable Ni(II)-bipyridine-based metal-organic framework (MOF) catalyst was designed for direct N-alkylation of amines with alcs. through a borrowing hydrogen (BH) strategy. This earth-abundant metal-based metal-organic framework catalyst significantly outperforms its homogeneous analogs and is reusable for at least up to 4 cycles without significant decrease in the yield of the target product. In the experiment, the researchers used many compounds, for example, (4-Chlorophenyl)methanol (cas: 873-76-7Quality Control of (4-Chlorophenyl)methanol).

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Quality Control of (4-Chlorophenyl)methanol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Gardini, Fausto et al. published their research in African Journal of Microbiology Research in 2009 | CAS: 2451-01-6

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Safety of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate

Composition of four essential oils obtained from plants from Cameroon, and their bactericidal and bacteriostatic activity against Listeria monocytogenes, Salmonella enteritidis and Staphylococcus aureus was written by Gardini, Fausto;Belletti, Nicoletta;Ndagijimana, Maurice;Guerzoni, Maria E.;Tchoumbougnang, Francois;Zollo, Paul H. Amvam;Micci, Claudio;Lanciotti, Rosalba;Sado Kamdem, Sylvain L.. And the article was included in African Journal of Microbiology Research in 2009.Safety of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate This article mentions the following:

The composition of four essential oils (EOs) extracted by hydrodistillation from plants of common use in Cameroon (Curcuma longa, Xylopia aethiopica, Zanthoxylum leprieurii L., Zanthoxylum xanthoxyloides) was assessed by gas chromatog.-mass. Their bactericidal and bacteriostatic activity was tested in vitro against three food borne pathogenic bacteria: Listeria monocytogenes, Salmonella enteritidis and Staphylococcus aureus. The bacteriostatic activities of this EOs on food borne bacteria were assessed in vitro through optical d. measurements. The minimal bactericidal concentrations (MBC) were determined in broth combined with a spot plating method. Z. xanthoxyloides and Z. leprieurii showed a similar composition, with a prevalence of oxygenated monoterpenes (about 58%). The EO of Z. xanthoxyloides was the most effective against the microorganisms tested. Its higher concentration of geraniol could be linked to this higher activity. In almost all cases, the MBC was higher than the maximum concentration tested (3000 ppm). Notwithstanding their low bactericidal effect, the EOs studied showed interesting inhibiting activities against the tested food borne pathogens. S. enteritidis was the most resistant to the bacteriostatic effect of the four EOs. The knowledge of the antimicrobial potential of local plant EOs used in developing countries could help in their choice and their use to improve food safety and shelf-life. In the experiment, the researchers used many compounds, for example, rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6Safety of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate).

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Safety of rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wu, Datong et al. published their research in Journal of Chromatography A in 2015 | CAS: 5856-63-3

(R)-2-Aminobutan-1-ol (cas: 5856-63-3) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.COA of Formula: C4H11NO

Specific cooperative effect for the enantiomeric separation of amino acids using aqueous two-phase systems with task-specific ionic liquids was written by Wu, Datong;Zhou, Ying;Cai, Pengfei;Shen, Shanshan;Pan, Yuanjiang. And the article was included in Journal of Chromatography A in 2015.COA of Formula: C4H11NO This article mentions the following:

Aqueous two-phase systems (ATPS) based on hydrophilic ionic liquid (IL) and inorganic salt solution were designed and prepared for the enantiomeric separation of racemic amino acids. Two different kinds of hydrophilic ionic liquids (I, IL-1 and II IL-2) containing functional groups were synthesized to sep. racemic amino acids. Preliminary experiments showed that D-enantiomer of amino acids cooperatively interacted with ILs, which pushed D-enantiomer to remain in the bottom IL-rich phase. By contrast, L-enantiomer was transferred into the top Na2SO4-rich phase. The enantioselectivity of IL-1 was better than that of IL-2 because of their different intermol. interactions. Various factors influencing separation efficiency were also systematically studied including extraction time, IL volume and temperature Also, the mechanism was studied by 1H NMR and DFT calculations, which showed that the hydrogen bond between the carboxylate and amide groups and the resonance-assisted hydrogen bond between amino and hydroxyl groups conditioned the movement between the residues and ILs. Finally, IL-1 was validated with other general amino acids by the same procedures based on ATPS. In the experiment, the researchers used many compounds, for example, (R)-2-Aminobutan-1-ol (cas: 5856-63-3COA of Formula: C4H11NO).

(R)-2-Aminobutan-1-ol (cas: 5856-63-3) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.COA of Formula: C4H11NO

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Badjic, Jovica D. et al. published their research in Journal of Physical Chemistry B in 2000 | CAS: 220227-37-2

(3,4,5-Trifluorophenyl)methanol (cas: 220227-37-2) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Application of 220227-37-2

Unexpected interactions between sol-gel silica glass and guest molecules. Extraction of aromatic hydrocarbons into polar silica from hydrophobic solvents was written by Badjic, Jovica D.;Kostic, Nenad M.. And the article was included in Journal of Physical Chemistry B in 2000.Application of 220227-37-2 This article mentions the following:

Properties of a solute may differ greatly between a free solution and that solution confined in pores of a sol-gel glass. The authors studied the entry of various aromatic organic compounds from solution into the monolith of sol-gel silica immersed in this solution Partitioning of the solute is quantified by the uptake coefficient, the ratio of its concentrations in the glass and in the surrounding solution at equilibrium The dependence of this coefficient on the solvent gives insight into possible interactions between the solute and the silica matrix. The authors report the uptake of 31 compounds altogether: 18 halogen derivatives of benzene; 5 condensed (fused) aromatics; and stilbene and three substituted derivatives of it, each in both cis and trans configurations. When the solvent is hexane, the uptake coefficients are as follows: 1.0-1.9 for the halobenzenes; 3.0-4.6 for the hydrocarbons; and 3.3-4.9 for the stilbenes. When the solvent is carbon tetrachloride or dichloromethane, the uptake coefficients become 0.82-1.39 for the hydrocarbons and 0.90-1.25 for the stilbenes. The excessive uptake of organic compounds from hexane is unexpected, for it amounts to extraction of nonpolar or slightly polar solutes from a nonpolar solvent into a polar interior of silica glass. The solute-silica interactions responsible for this extraction are not of the van der Waals type. The authors’ findings are consistent with hydrogen bonding between the aromatic π system in the solutes and the hydroxyl groups on the silica surface. Hexane cannot interact with this surface but dichloromethane and carbon tetrachloride can: they shield the hydroxyl groups from the organic solvents and thus suppress the hydrogen bonding. This explanation is supported by the emission spectra of the aromatic compound pyrene when it is dissolved in acetonitrile, dichloromethane, cyclohexyl chloride, and hexane and when it is taken up by monoliths of sol-gel silica from these four solutions The relative intensities of the emission bands designated III and I change greatly when pyrene is taken up from hexane but remain unchanged when it is taken up from the other three solvents. Evidently, hexane does not, whereas the other three solvents do, line the silica surface and shield it from approach by pyrene mols. Even though solute mols. are much smaller than the pores in the sol-gel glass, diffusion of these mols. into the monolith may result in an uneven partitioning at equilibrium This fact must be taken into consideration in the design of biosensors, immobilized catalysts, and other composite materials because their function depends on the entry of analytes, substrates, and other chems. into the glass matrix. In the experiment, the researchers used many compounds, for example, (3,4,5-Trifluorophenyl)methanol (cas: 220227-37-2Application of 220227-37-2).

(3,4,5-Trifluorophenyl)methanol (cas: 220227-37-2) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Application of 220227-37-2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Sayegh, Adnan et al. published their research in ChemElectroChem in 2021 | CAS: 29364-29-2

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Application In Synthesis of Sodium 2-methyl-2-propanethiolate

Finding Adapted Quinones for Harvesting Electrons from Photosynthetic Algae Suspensions was written by Sayegh, Adnan;Perego, Luca A.;Arderiu Romero, Marc;Escudero, Louis;Delacotte, Jerome;Guille-Collignon, Manon;Grimaud, Laurence;Bailleul, Benjamin;Lemaitre, Frederic. And the article was included in ChemElectroChem in 2021.Application In Synthesis of Sodium 2-methyl-2-propanethiolate This article mentions the following:

Among all the chem. and biotechnol. strategies implemented to extract energy from oxygenic photosynthesis, several concern the use of intact photosynthetic organisms (algae, cyanobacteria…). This means rerouting (fully or partially) the electron flow from the photosynthetic chain to an outer collecting electrode thus generating a photocurrent. While diverting photosynthetic electrons from living biol. systems is an encouraging approach, this strategy is limited by the need to use an electron shuttle. Redox mediators that are able to interact with an embedded photosynthetic chain are rather scarce. In this respect, exogenous quinones are the most frequently used. Unfortunately, some of them also act as poisoning agents within relatively long timeframes. It thus raises the question of the best quinone. In this work, we use a previously reported electrochem. device to analyze the performance of different quinones. Photocurrents (maximum photocurrent, stability) were measured from suspensions of Chlamydomonas reinhardtii algae/quinones by chronoamperometry and compared to parameters like quinone redox potentials or cytotoxic concentration From these results, several quinones were synthesized and analyzed in order to find the best compromise between bioelectricity production and toxicity. In the experiment, the researchers used many compounds, for example, Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2Application In Synthesis of Sodium 2-methyl-2-propanethiolate).

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Application In Synthesis of Sodium 2-methyl-2-propanethiolate

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Yuan, Yi et al. published their research in Inorganic Chemistry in 2020 | CAS: 49669-14-9

2-Bromo-6-(2-methyl-1,3-dioxolan-2-yl)pyridine (cas: 49669-14-9) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.COA of Formula: C9H10BrNO2

Iridium(III) Complexes Bearing a Formal Tetradentate Coordination Chelate: Structural Properties and Phosphorescence Fine-Tuned by Ancillaries was written by Yuan, Yi;Gnanasekaran, Premkumar;Chen, Yu-Wen;Lee, Gene-Hsiang;Ni, Shao-Fei;Lee, Chun-Sing;Chi, Yun. And the article was included in Inorganic Chemistry in 2020.COA of Formula: C9H10BrNO2 This article mentions the following:

Synthesis of the multidentate coordinated chelate N3C-H2, composed of a linked functional pyridyl pyrazole fragment plus a peripheral Ph and pyridyl unit, was obtained using a multistep protocol. Preparation of Ir(III) metal complexes bearing a N3C chelate in the tridentate (κ3), tetradentate (κ4), and pentadentate (κ5) modes was executed en route from two nonemissive dimer intermediates [Ir(κ3-N3CH)Cl2]2 (1) and [Ir(κ4-N3C)Cl]2 (2). Next, a series of mononuclear Ir(III) complexes with the formulas [Ir(κ4-N3C)Cl(py)] (3), [Ir(κ4-N3C)Cl(dmap)] (4), [Ir(κ4-N3C)Cl(mpzH)] (5), and [Ir(κ4-N3C)Cl(dmpzH)] (6), as well as diiridium complexes [Ir25-N3C)(mpz)2(CO)(H)2] (7) and [Ir25-N3C)(dmpz)2(CO)(H)2] (8), were obtained upon treatment of dimer 2 with pyridine (py), 4-dimethylaminopyridine (dmap), 4-methylpyrazole (mpzH), and 3,5-dimethylpyrazole (dmpzH), resp. These Ir(III) metal complexes were identified using spectroscopic methods and by x-ray crystallog. anal. of representative derivatives 3, 5, and 7. Their photophys. and electrochem. properties were investigated and confirmed by the theor. simulations. Notably, green-emitting organic light-emitting diode (OLED) on the basis of Ir(III) complex 7 gives a maximum external quantum efficiency up to 25.1%. This result sheds light on the enormous potential of this tetradentate coordinated chelate in the development of highly efficient iridium complexes for OLED applications. Preparation of Ir(III) complexes bearing tailor-made multidentate N3C chelate are reported, from which a green-emitting OLED with a maximum EQE of 25.1% was successfully fabricated using diiridium complex 7. In the experiment, the researchers used many compounds, for example, 2-Bromo-6-(2-methyl-1,3-dioxolan-2-yl)pyridine (cas: 49669-14-9COA of Formula: C9H10BrNO2).

2-Bromo-6-(2-methyl-1,3-dioxolan-2-yl)pyridine (cas: 49669-14-9) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.COA of Formula: C9H10BrNO2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Orakdogen, Nermin et al. published their research in Polymer Degradation and Stability in 2017 | CAS: 109-17-1

((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Synthetic Route of C16H26O7

Poly(Hydroxypropyl methacrylate-co-glycidyl methacrylate): Facile synthesis of well-defined hydrophobic gels containing hydroxy-functional methacrylates was written by Orakdogen, Nermin;Sanay, Berran. And the article was included in Polymer Degradation and Stability in 2017.Synthetic Route of C16H26O7 This article mentions the following:

A range of well-defined hydrophobic hydroxy-functional methacrylate-based gels has been synthesized by free-radical crosslinking copolymerization of the monomers Hydroxypropyl methacrylate (HPMA) and Glycidyl methacrylate (GMA). Particularly, the effect of the hydrophobic functional groups of the comonomer GMA on the elasticity and swelling properties was investigated in order to understand the exact interactions and the consequent changes in the phys. characteristics of poly(Hydroxypropyl methacrylate-co-glycidyl methacrylate) P(HPMA-co-GMA) hydrogels as well as cryogels. In addition, measuring and understanding how to control the mech. response of the resulting gels which usually refers to the resistance to failure by fracture or excessive deformation can help the targeted design of specific applications with extended functionality. In the light of the exptl. findings, it was suggested that the studied system with the monomers HPMA and GMA containing both acrylic and epoxy groups provides the design and performance versatility required for the most demanding coating and resin applications. In the experiment, the researchers used many compounds, for example, ((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1Synthetic Route of C16H26O7).

((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Synthetic Route of C16H26O7

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts