Eckert-Maksic, Mirjana et al. published their research in Journal of Physical Organic Chemistry in 1998 | CAS: 15777-70-5

4-Hydroxy-3-methylbenzonitrile (cas: 15777-70-5) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Reference of 15777-70-5

Absolute proton affinities of some substituted toluenes: the additivity rule of thumb for ipso attack was written by Eckert-Maksic, Mirjana;Knezevic, Andrea;Maksic, Zvonimir B.. And the article was included in Journal of Physical Organic Chemistry in 1998.Reference of 15777-70-5 This article mentions the following:

The problem of the ipso protonation of toluene and its predominantly disubstituted derivatives was considered by the MP2(fc)/6-31G**//HF/6-31G*+ZPE(HF/6-31G*) theor. model. The substituents involved covered a wide range of different donor-acceptor capabilities. It is shown that the calculated MP2 ipso proton affinities of substituted toluenes follow mutatis mutandis the same additivity rule which was found earlier to be operative in polysubstituted benzenes, naphthalenes and biphenylenes. The additivity equation is both intuitively appealing and useful, being able to offer quant. estimates of the proton affinity by very simple calculation It is based on the concept of the increment, which in turn describes the influence of a single substituent on the proton affinity. Any substituent behaves as a rule as if the other were non-existent, thus giving rise to the independent substituent approximation (ISA). The performance of the additivity rule of thumb is very good, as evidenced by the average absolute deviation of 1 kcal mol-1. Larger deviations are possible, but they rarely occur, being indicative of a difference in interactions between substituents in the initial neutral base and in the final cationic conjugate acid. Finally, it follows as a corollary of the present anal. that protonation ipso to the CH3 group is never thermodynamically the most favorable site of proton attack in the benzene ring, provided that there is a single unsubstituted carbon atom within the aromatic moiety. The relevance of ipso protonation in persubstituted benzenes is briefly discussed. In the experiment, the researchers used many compounds, for example, 4-Hydroxy-3-methylbenzonitrile (cas: 15777-70-5Reference of 15777-70-5).

4-Hydroxy-3-methylbenzonitrile (cas: 15777-70-5) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Reference of 15777-70-5

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Boyd, Derek R. et al. published their research in Organic & Biomolecular Chemistry in 2006 | CAS: 120121-01-9

(R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Recommanded Product: (R)-1-(3-Chlorophenyl)ethanol

Dioxygenase-catalysed oxidation of disubstituted benzene substrates: benzylic monohydroxylation versus aryl cis-dihydroxylation and the meta effect was written by Boyd, Derek R.;Sharma, Narain D.;Bowers, Nigel I.;Dalton, Howard;Garrett, Mark D.;Harrison, John S.;Sheldrake, Gary N.. And the article was included in Organic & Biomolecular Chemistry in 2006.Recommanded Product: (R)-1-(3-Chlorophenyl)ethanol This article mentions the following:

Biotransformations of a series of ortho-, meta- and para-substituted ethylbenzene and propylbenzene substrates have been carried out, using Pseudomonas putida UV4, a source of toluene dioxygenase (TDO). The ortho- and para-substituted alkylbenzene substrates yielded, exclusively, the corresponding enantiopure cis-dihydrodiols of the same absolute configuration. However, the meta isomers, generally, gave benzylic alc. bioproducts, in addition to the cis-dihydrodiols (the meta effect). The benzylic alcs. were of identical (R) absolute configuration but enantiomeric excess values were variable. The similar (2R) absolute configurations of the cis-dihydrodiols are consistent with both the Et and Pr groups having dominant stereodirecting effects over the other substituents. The model used earlier, to predict the regio- and stereo-chem. of cis-dihydrodiol bioproducts derived from substituted benzene substrates has been refined, to take account of non-sym. substituents like Et or Pr groups. The formation of benzylic hydroxylation products, from meta-substituted benzene substrates, without further cis-dihydroxylation to yield triols provides a further example of the meta effect during toluene dioxygenase-catalyzed oxidations In the experiment, the researchers used many compounds, for example, (R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9Recommanded Product: (R)-1-(3-Chlorophenyl)ethanol).

(R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Recommanded Product: (R)-1-(3-Chlorophenyl)ethanol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wang, Yanan et al. published their research in Journal of Animal Science and Biotechnology in 2022 | CAS: 499-75-2

5-Isopropyl-2-methylphenol (cas: 499-75-2) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Name: 5-Isopropyl-2-methylphenol

Effects of different amino acid levels and a carvacrol-thymol blend on growth performance and intestinal health of weaned pigs was written by Wang, Yanan;Yang, Zhipeng;Zhou, Yuanfei;Tan, Jiajian;Sun, Haiqing;Sun, Defa;Mu, Yuyun;Peng, Jian;Wei, Hongkui. And the article was included in Journal of Animal Science and Biotechnology in 2022.Name: 5-Isopropyl-2-methylphenol This article mentions the following:

Over the past years, antibiotic growth promoter had been restricted in animal husbandry production in many countries because of antimicrobial resistance and foodborne antibiotic residues. However, the problems of poor intestinal health and low growth efficiency of piglets have not been solved completely in an antibiotic-free diet, and it is urgent to explore alternatives to antimicrobial growth promoters. Here, a total of 532 weaned pigs were assigned to one of 4 treatments, the low amino acid (AA) level diet (d 1 to d 14 is 1.35%, d 15 to d 42 is 1.25%) (Low AA), the low AA level diet supplementation with a carvacrol-thymol blend (50 mg carvacrol and 50 mg thymol/kg of diet) (CB) (Low AA+CB), the high AA level diet (d 1 to d 14 is 1.50%, d 15 to d 42 is 1.40%) (High AA), and the high AA level diet supplementation with a CB (High AA+CB), resp. Then we measured growth performance and intestinal health indicators of weaned pigs. Results showed that high AA level significantly reduced plasma urea nitrogen, plasma Interleukin-6 (IL-6) and fecal lipocalin-2 contents (P < 0.05), significantly increased the relative abundance of fecal Lactobacillus and Enterococcus, and had a trend to increase the fecal secretory IgA (sIgA) and mucin 2 (MUC 2) contents (P < 0.05) in piglets, thereby alleviating the diarrhea of piglets and reducing the feed conversion ratio (FCR) of piglets during d 1~14 after weaning. Dietary supplementation with CB significantly increased the activity of plasma antioxidant enzymes T-SOD and GSH-px (P < 0.05), while significantly reduced plasma malondialdehyde (MDA), plasma interleukin-1β (IL-1β), plasma endotoxin and D-lactic acid contents (P < 0.05). Meanwhile, CB significantly decreased fecal lipocalin-2 contents and the abundance of fecal Escherichia coli (P < 0.05). Thus, we hypothesis that dietary supplementation with CB significantly increased the average daily gain (ADG) of piglets (P < 0.05) during d 1∼14 after weaning through promoting intestinal health. These results suggest that high AA level and dietary supplementation with CB improved the growth performance of weaned pigs in an antibiotic-free diet by improving AA metabolism and intestinal antioxidant capacity. In the experiment, the researchers used many compounds, for example, 5-Isopropyl-2-methylphenol (cas: 499-75-2Name: 5-Isopropyl-2-methylphenol).

5-Isopropyl-2-methylphenol (cas: 499-75-2) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Name: 5-Isopropyl-2-methylphenol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Damaziak, K. et al. published their research in Animal Feed Science and Technology in 2021 | CAS: 137-08-6

Calcium (R)-3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanoate (cas: 137-08-6) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.SDS of cas: 137-08-6

Effects of replacement genetically modified soybean meal by a mixture of: Linseed cake, sunflower cake, guar meal and linseed oil in laying hens diet. Production results and eggs quality was written by Damaziak, K.;Riedel, J.;Marzec, A.;Kowalska, H.;Niemiec, J.;Gozdowski, D.;Cholcha, I.. And the article was included in Animal Feed Science and Technology in 2021.SDS of cas: 137-08-6 This article mentions the following:

The Kulmilk (KulM) preparation containing linseed cake (300 g/kg), sunflower cake (350 g/kg), guar meal (300 g/kg) and linseed oil (50 g/kg) was studied as alternative to genetically modified soybean meal (GM SBM) in the diet of laying hens. Two hundred forty hens maintained in cages were divided into 5 groups (8 hens per cage x 6 replications). From 18 wk of life, the hens were fed five diets for 33 wks: Control without KulM, and A, B, C, D with resp. KulM content: 109, 170, 222 and 292 g/kg replacing GM SBM. Laying performance, egg weight, conversion ratio and hen mortality was continuously controlled throughout the experiment Hen body weight was determined on 0 and 32 wk of production On 7, 15 and 23 wk of laying, anal. of fresh eggs and eggs were stored for 21 d was performed (20 eggs per group). On 7 and 23 wk of hen laying, cholesterol level and fatty acid profile was determined on fresh eggs and eggs stored for 21 d (6 eggs per group). Sensory assessment of eggs was performed on eggs 15 wks laying. Introduction of KulM to the diet replacing GM SBM contributed to increas laying performance, reduced mean egg weight and the final hen body weight but it did not influence the weight of eggs per hen, conversion ratio and mortality. The best production results were obtained in group A. Pos. impact of KulM was observed on the albumen quality and the yolk index of fresh and stored eggs, as well as reduction of yolk adhesiveness after 21 d. Cholesterol level in yolks depended on the laying performance, thus KulM had indirect influenced on its reduction, especially in group A. Linear relationship was demonstrated between KulM level and reduction of SFA acids, particularly of C16:0 acid. KulM contributed to increas share of C18:1, C18:3 and C22:6 acids and reduction of C20:1 and C18:2 acids in the yolk. The influence of KulM on the content of individual mono- and polyunsaturated fatty acids was observed primarily in group D. No impact of KulM on the sensory quality of eggs could be demonstrated. In summary, KulM can be recommended as a safe and efficient substitute of GM SBM in laying hens diet, particularly at a concentration of the diet at 109 g/kg. In the experiment, the researchers used many compounds, for example, Calcium (R)-3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanoate (cas: 137-08-6SDS of cas: 137-08-6).

Calcium (R)-3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanoate (cas: 137-08-6) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.SDS of cas: 137-08-6

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhou, Liyi et al. published their research in Analytical Chemistry (Washington, DC, United States) in 2015 | CAS: 60463-12-9

3-(Hydroxymethyl)-4-nitrophenol (cas: 60463-12-9) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Related Products of 60463-12-9

Localizable and Photoactivatable Fluorophore for Spatiotemporal Two-Photon Bioimaging was written by Zhou, Liyi;Zhang, Xiaobing;Lv, Yifan;Yang, Chao;Lu, Danqing;Wu, Yuan;Chen, Zhuo;Liu, Qiaoling;Tan, Weihong. And the article was included in Analytical Chemistry (Washington, DC, United States) in 2015.Related Products of 60463-12-9 This article mentions the following:

Photoactivatable probe-based fluorescent imaging has become an efficient and attractive technique for spatiotemporal microscopic studies of biol. events. However, almost all previously reported photoactivatable organic probes have been based on hydrosol. precursors, which produced water-soluble active fluorophores able to readily diffuse away from the photocleavage site, thereby dramatically reducing spatial resolution Hydroxyphenylquinazolinone (HPQ), a small organic dye known for its classic luminescence mechanism through excited-state intramol. proton transfer (ESIPT), shows strong light emission in the solid state, but no emission in solution HPQ was employed as a precursor to develop a localizable, photoactivatable two-photon probe (PHPQ) for spatiotemporal bioimaging applications. After photocleavage, PHPQ releases a precipitating HPQ fluorophore which shows both one-photon and two-photon excited yellow-green fluorescence, thereby producing a localizable fluorescence signal that affords high spatial resolution for bioimaging, with >200-fold one-photon and 150-fold two-photon fluorescence enhancement. In the experiment, the researchers used many compounds, for example, 3-(Hydroxymethyl)-4-nitrophenol (cas: 60463-12-9Related Products of 60463-12-9).

3-(Hydroxymethyl)-4-nitrophenol (cas: 60463-12-9) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Related Products of 60463-12-9

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhang, Xingxian et al. published their research in Journal of Chemical Research in 2010 | CAS: 1122-71-0

6-Methyl-2-pyridinemethanol (cas: 1122-71-0) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Related Products of 1122-71-0

Lewis base-catalyzed Mukaiyama-aldol reaction of trimethylsilyl enolates with aldehydes was written by Zhang, Xingxian;Shi, Junchen;Hu, Shenghui. And the article was included in Journal of Chemical Research in 2010.Related Products of 1122-71-0 This article mentions the following:

An efficient Mukaiyama-type aldol reaction of three silyl enolates, such as 1-[(trimethylsilyl)oxy]-1-methoxy-2-methyl-2-propene [i.e., [(1-methoxy-2-methyl-1-propen-1-yl)oxy]trimethylsilane], 1-phenyl-1-[(trimethylsilyl)oxy]ethene [i.e., [1-[(trimethylsilyl)oxy]ethenyl]silane] and 1,2-bis[(trimethylsilyl)oxy]cyclobutene with aryl aldehydes and α,β-unsaturated aldehydes catalyzed by 5 mol% Lewis base catalyst (4-nitrophenoxy)magnesium iodide [i.e., 4-O2NPhOMgI] in CH2Cl2 solvent is described. The reaction proceeds under mild reaction conditions and the synthesis of the target compounds was achieved in good yield. In the experiment, the researchers used many compounds, for example, 6-Methyl-2-pyridinemethanol (cas: 1122-71-0Related Products of 1122-71-0).

6-Methyl-2-pyridinemethanol (cas: 1122-71-0) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Related Products of 1122-71-0

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Sato, Kei et al. published their research in Atmospheric Environment: X in 2022 | CAS: 60463-12-9

3-(Hydroxymethyl)-4-nitrophenol (cas: 60463-12-9) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Computed Properties of C7H7NO4

Formation of secondary organic aerosol tracers from anthropogenic and biogenic volatile organic compounds under varied NOx and oxidant conditions was written by Sato, Kei;Ikemori, Fumikazu;Ramasamy, Sathiyamurthi;Iijima, Akihiro;Kumagai, Kimiyo;Fushimi, Akihiro;Fujitani, Yuji;Chatani, Satoru;Tanabe, Kiyoshi;Takami, Akinori;Tago, Hiroshi;Saito, Yoshinori;Saito, Shinji;Hoshi, Junya;Morino, Yu. And the article was included in Atmospheric Environment: X in 2022.Computed Properties of C7H7NO4 This article mentions the following:

For source apportionment by tracer method of secondary organic aerosol (SOA), the ratios of aerosol tracer to total SOA mass (fSOA) were determined during the oxidation of toluene, naphthalene, α-pinene, and isoprene by a series of laboratory experiments Seven anthropogenic SOA tracers maintaining an aromatic ring structure, including 4-nitrophthalic acid and 3,5-dinitrosalicylic, were newly investigated as a chamber study together with 21 traditional aerosol tracers of anthropogenic and biogenic SOA. Experiments of the OH-initiated oxidation of anthropogenic VOCs were conducted as a function of the initial VOC/NOx ratio. No significant dependence on the VOC/NOx ratio was observed for the fSOA of 2,3-dihydroxy-4-oxopentanoic acid from toluene and phthalic acid from naphthalene, whereas the fSOA of nitroarom. compounds such as 5-nitrosalicylic acid, 3,5-dinitrosalicylic acid, and 4-nitrophthalic acid increased with decreasing VOC/NOx ratio. Among seven newly evaluated anthropogenic SOA tracers, we concluded that 3,5-dinitronsalicylic can be used as a toluene SOA tracer, whereas 4-nitrophthalic acid can be used as a naphthalene SOA tracer. Results of kinetic calculations suggest that naphthalene is a major source of 5-nitrosalicylic acid under urban and rural conditions of previous observation studies. The ozonolysis and NO3-initiated oxidation of biogenic VOCs were investigated in addition to OH-initiated oxidation of biogenic VOCs. As for biogenic SOA tracers such as pinic acid and 2-methyltetrols, the fSOA value measured for the NO3-intiated reaction was lower than that of the OH-initiated oxidation and the fSOA value measured for the ozonolysis was not necessarily close to that of the OH-initiated oxidation These results suggest that daytime and nighttime biogenic SOA formation events are interpreted by using different sets of the fSOA values. In the experiment, the researchers used many compounds, for example, 3-(Hydroxymethyl)-4-nitrophenol (cas: 60463-12-9Computed Properties of C7H7NO4).

3-(Hydroxymethyl)-4-nitrophenol (cas: 60463-12-9) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Computed Properties of C7H7NO4

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Gao, Tianye et al. published their research in Polyhedron in 2022 | CAS: 873-76-7

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Computed Properties of C7H7ClO

Copper(II) complexes supported by 8-hydroxyquinoline-imine ligands: Synthesis, characterization and catalysis in aerobic alcohols oxidation was written by Gao, Tianye;Meng, Lizhen;Zeng, Guang;Hao, Zhiqiang;Han, Zhangang;Feng, Qi;Lin, Jin. And the article was included in Polyhedron in 2022.Computed Properties of C7H7ClO This article mentions the following:

Treatment of Cu(OAc)2·4H2O with 8-hydroxylquinoline-imine ligands [2-(ArN = Hc)-8-OH]C9H5N (Ar = 2,6-iPr2C6H3, L1H; Ar = 4-ClC6H4, L2H; Ar = 4-BrC6H4, L3H and Ar = 4-OMeC6H4, L4H) in refluxing EtOH gave the dual-ligand coordinated copper complexes [L2Cu] (1a1d) in good yields, resp. All the four Cu complexes were characterized by IR, EPR, elemental anal. and HR-MS. Furthermore, the mol. structures of 1a and 1d were further confirmed by x-ray crystallog. anal. These complexes displayed high catalytic activity and good selectivity for aerobic oxidation of primary and secondary alcs. in the presence of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxyl) as the co-catalyst. The yields of desired aldehydes are decent (up to 84%) and the corresponding yields of ketones are at 78-91%. In the experiment, the researchers used many compounds, for example, (4-Chlorophenyl)methanol (cas: 873-76-7Computed Properties of C7H7ClO).

(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Computed Properties of C7H7ClO

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Shaabani, Ahmad et al. published their research in Catalysis Letters in 2019 | CAS: 1777-82-8

(2,4-Dichlorophenyl)methanol (cas: 1777-82-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.COA of Formula: C7H6Cl2O

Iron-Decorated, Guanidine Functionalized Metal-Organic Framework as a Non-heme Iron-Based Enzyme Mimic System for Catalytic Oxidation of Organic Substrates was written by Shaabani, Ahmad;Mohammadian, Reza;Farhid, Hassan;Karimi Alavijeh, Masoumeh;Amini, Mostafa M.. And the article was included in Catalysis Letters in 2019.COA of Formula: C7H6Cl2O This article mentions the following:

A novel porous functionalized metal-organic framework (MOF) as a non-heme iron-based enzyme mimic system was achieved via two-step post-synthetic modification of the MIL-101(Cr)-NH2, and characterized by FT-IR, PXRD, TGA, SEM, EDS, CHN, BET surface area, and ICP-OES analyses. This new modified MOF (MIL-101(Cr)-guanidine-Fe) has been demonstrated to be a highly efficient, active, and reusable catalyst for oxidation of various organic substrates, including alcs., alkenes and alkyl arenes at room temperature using H2O2 as an oxidant. In the experiment, the researchers used many compounds, for example, (2,4-Dichlorophenyl)methanol (cas: 1777-82-8COA of Formula: C7H6Cl2O).

(2,4-Dichlorophenyl)methanol (cas: 1777-82-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.COA of Formula: C7H6Cl2O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Lacotte, Pierre et al. published their research in ChemMedChem in 2013 | CAS: 1122-71-0

6-Methyl-2-pyridinemethanol (cas: 1122-71-0) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Product Details of 1122-71-0

Synthesis and Evaluation of 3,4-Dihydropyrimidin-2(1H)-ones as Sodium Iodide Symporter Inhibitors was written by Lacotte, Pierre;Puente, Celine;Ambroise, Yves. And the article was included in ChemMedChem in 2013.Product Details of 1122-71-0 This article mentions the following:

The sodium iodide symporter (NIS) is responsible for the accumulation of iodide in the thyroid gland. This transport process is involved in numerous thyroid dysfunction and is the basis for human contamination in the case of exposure to radioactive iodine species. 4-Aryl-3,4-dihydro-2(1H)-pyrimidinone derivatives were recently discovered by high-throughput screening as the first NIS inhibitors. Described herein are the synthesis and evaluation of 115 derivatives with structural modifications at five key positions on the pyrimidone core. This study provides extensive structure-activity relationships for this new class of inhibitors that will serve as a basis for further development of compounds with in vivo efficacy and adequate pharmacokinetic properties. In addition, the SAR investigation provided a more potent compound, which exhibits an IC50 value of 3.2 n in a thyroid cell line (FRTL5, animal model, rat model). The title compounds thus formed included analogs and derivatives of 1,2,3,4-tetrahydro-6-methyl-2-oxo-4-phenyl-5-pyrimidinecarboxylic acid (4-methoxyphenyl)methyl ester (I), such as thiophene derivatives, pyridine derivatives, imidazole derivatives, naphthalene derivatives, etc. The synthesis of the target compounds was achieved using Meldrum’s acid, amines aldehydes and alcs. as simple starting materials. In the experiment, the researchers used many compounds, for example, 6-Methyl-2-pyridinemethanol (cas: 1122-71-0Product Details of 1122-71-0).

6-Methyl-2-pyridinemethanol (cas: 1122-71-0) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Product Details of 1122-71-0

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts