Aroulmoji, Vincent’s team published research in International Journal of Pharmaceutical Sciences and Research in 2013 | CAS: 64519-82-0

International Journal of Pharmaceutical Sciences and Research published new progress about Bitterness. 64519-82-0 belongs to class alcohols-buliding-blocks, name is (3R,4R,5R)-6-(((2S,3R,4S,5S,6R)-3,4,5-Trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexane-1,2,3,4,5-pentaol, and the molecular formula is C12H24O11, Product Details of C12H24O11.

Aroulmoji, Vincent published the artcileSolution properties and the masking of unpleasant tastes of nicotine – sweetener – water mixtures, Product Details of C12H24O11, the main research area is nicotine sweetener water mixture solution unpleasant taste.

Solutions properties of sapide mols. provide fundamental information on type (hydrophobic or hydrophilic) and degree of hydration. Physico-Chem. properties like intrinsic viscosity, Apparent Sp. volume (ASV) and related parameters for bitter mol. (nicotine) and bitterness inhibitors (carbohydrate sweeteners, artificial sweeteners) and their mixtures were determined to study the role of water structure in the mechanism of unpleasant taste inhibition. The hydrophobicity of bitter mol. (nicotine) is manifested by ASV value of 0.920 cm3g-1 obtained in artificial buffered saliva (pH ≈ 8.2). Under these conditions nicotine (3-(1-methyl-2-pyrrolidinyl)pyridine) is in neutral form, the most potentially hydrophobic. Exptl. results indicate that viscometric constant (intrinsic viscosity [η], Huggins constant k’, B coefficient) could discriminate between different sapid mols. tested at our laboratory The ASV value of carbohydrate sweeteners falls within the sweet region. The bitterness of nicotine is manifested by ASV as high as 0.920 cm3g-1, which falls in the bitter region. Solution properties also determined for sweet-bitter mixtures validate an improvement in the fitting of solute mols. with solvent structure through the decrease of ASV which falls in the range of ASVs of sweet mols. The results of viscometric constants and hydration number of sweet-bitter mixtures illustrate an obvious effect of sweet mols. on the hydration property of nicotine. The effect of sweetener on the solution property of bitter mol. (nicotine) is attributed to a modification of hydration. This exptl. result validates the assumption in designating sweetener as bitterness inhibitor. The mechanism of inhibition of bitterness by sweet mols. may be credited to the arrangement of water mols. hydration which is more mobile.

International Journal of Pharmaceutical Sciences and Research published new progress about Bitterness. 64519-82-0 belongs to class alcohols-buliding-blocks, name is (3R,4R,5R)-6-(((2S,3R,4S,5S,6R)-3,4,5-Trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexane-1,2,3,4,5-pentaol, and the molecular formula is C12H24O11, Product Details of C12H24O11.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Cai, Cheng’s team published research in ChemSusChem in 2020-09-01 | CAS: 584-02-1

ChemSusChem published new progress about Birch wood. 584-02-1 belongs to class alcohols-buliding-blocks, name is 3-Pentanol, and the molecular formula is C5H12O, Safety of 3-Pentanol.

Cai, Cheng published the artcileComparison of Two Acid Hydrotropes for Sustainable Fractionation of Birch Wood, Safety of 3-Pentanol, the main research area is acid hydrotrope sustainable birch wood; acid recovery; cellulose nanofibrils; esterification; lignin; maleic acid.

This study reports on a comparative study of acid hydrotropic fractionation (AHF) of birch wood using maleic acid (MA) and p-toluenesulfonic acid (p-TsOH). Under the same level of delignification, lignin dissolved by MA is much less condensed with a higher content of ether aryl β-O-4 linkages. Lignin depolymerization dominated in MA hydrotropic fractionation (MAHF) and resulted in a single lower mol. weight peak, in contrast to the competitive depolymerization and repolymn. in p-TsOH AHF with a bimodal distribution. The less condensed MA-dissolved lignin facilitated catalytic conversion to monophenols. Carboxylation of residual lignin in fractionated cellulosic water-insoluble solids (WISs) enhanced enzymic saccharification by decreasing nonproductive cellulase binding to lignin. At a low cellulase loading of 10 FPU g-1 glucan, saccharification of WIS-MT120 from MAHF at 120°C was 95% compared with 48% for WIS-PT85 from p-TsOH AHF at 85°C under the same level of delignification of 63%. Residual lignin carboxylation also facilitated nanofibrillation of WIS for producing lignin-containing cellulose nanofibrils (LCNFs) through an enhanced lignin lubrication effect, which substantially decreases fibrillation energy. LCNFs from only one pass of microfluidization of WIS-MT120 have the same morphol. as those from WIS-PT85 after three passes. MA also has a lower solubility and higher minimal hydrotropic concentration, which facilitated acid recovery. MA is U. S. Food and Drug Administration (FDA)-approved as an indirect food additive, affording significant advantages compared with p-TsOH for biorefinery applications.

ChemSusChem published new progress about Birch wood. 584-02-1 belongs to class alcohols-buliding-blocks, name is 3-Pentanol, and the molecular formula is C5H12O, Safety of 3-Pentanol.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Churakova, Ekaterina’s team published research in International Dairy Journal in 2019-09-30 | CAS: 59-23-4

International Dairy Journal published new progress about Biosensors. 59-23-4 belongs to class alcohols-buliding-blocks, name is (2R,3S,4S,5R)-2,3,4,5,6-Pentahydroxyhexanal, and the molecular formula is C6H12O6, COA of Formula: C6H12O6.

Churakova, Ekaterina published the artcileAccurate analysis of residual lactose in low-lactose milk: Comparing a variety of analytical techniques, COA of Formula: C6H12O6, the main research area is milk lactose HPAEC PAD residual analysis.

To receive the designation “”lactose-free””, milk should contain <0.01% (weight/weight) lactose. As the anal. of such low levels of lactose is often hampered by other saccharides present or formed during milk processing, methods are required that are highly sensitive, accurate and precise. Currently, there is no international standard anal. method for the determination of lactose in low- or lactose-free milk, despite such a need from the dairy industry. We validated the anal. of residual lactose in lactase-treated UHT milk using HPAEC-PAD on a CarboPac PA100 column and compared it with a variety of commonly used anal. techniques for measuring lactose, including HPLC-RI, NMR, enzymic kits, cryoscopy, and lactose biosensors. The results show that only one anal. technique, namely the Biomilk300, an amperometric biosensor, has performance comparable with anal. by HPAEC-PAD, which remains one of the most accurate, precise and sensitive methods to assess low levels of lactose in milk. International Dairy Journal published new progress about Biosensors. 59-23-4 belongs to class alcohols-buliding-blocks, name is (2R,3S,4S,5R)-2,3,4,5,6-Pentahydroxyhexanal, and the molecular formula is C6H12O6, COA of Formula: C6H12O6.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Cai, Zhongyu’s team published research in ACS Sensors in 2017-10-27 | CAS: 2595-07-5

ACS Sensors published new progress about Biosensors. 2595-07-5 belongs to class alcohols-buliding-blocks, name is (2R,3R,4S,5R,6R)-2-(Allyloxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol, and the molecular formula is C9H16O6, HPLC of Formula: 2595-07-5.

Cai, Zhongyu published the artcileResponsive Photonic Crystal Carbohydrate Hydrogel Sensor Materials for Selective and Sensitive Lectin Protein Detection, HPLC of Formula: 2595-07-5, the main research area is photonic crystal carbohydrate hydrogel sensor detection lectin; biosensors; carbohydrate hydrogels; copolymerization; lectin proteins detection; photonic crystals.

Lectin proteins, such as the highly toxic lectin protein, ricin, and the immunochem. important lectin, jacalin, play significant roles in many biol. functions. It is highly desirable to develop a simple but efficient method to selectively detect lectin proteins. Here the authors report the development of carbohydrate containing responsive hydrogel sensing materials for the selective detection of lectin proteins. The copolymerization of a vinyl linked carbohydrate monomer with acrylamide and acrylic acid forms a carbohydrate hydrogel that shows specific “”multivalent”” binding to lectin proteins. The resulting carbohydrate hydrogels are attached to 2-D photonic crystals (PCs) that brightly diffract visible light. This diffraction provides an optical readout that sensitively monitors the hydrogel volume The authors use lactose, galactose, and mannose containing hydrogels to fabricate a series of 2-D PC sensors that show strong selective binding to the lectin proteins ricin, jacalin, and Con A. This binding causes a carbohydrate hydrogel shrinkage which significantly shifts the diffraction wavelength. The resulting 2-D PC sensors can selectively detect the lectin proteins ricin, jacalin, and Con A. These unoptimized 2-D PC hydrogel sensors show a limit of detection (LoD) of 7.5 × 10-8 M for ricin, a LoD of 2.3 × 10-7 M for jacalin, and a LoD of 3.8 × 10-8 M for Con A, resp. This sensor fabrication approach may enable numerous sensors for the selective detection of numerous lectin proteins.

ACS Sensors published new progress about Biosensors. 2595-07-5 belongs to class alcohols-buliding-blocks, name is (2R,3R,4S,5R,6R)-2-(Allyloxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol, and the molecular formula is C9H16O6, HPLC of Formula: 2595-07-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Sharma, Mamta’s team published research in Carbohydrate Research in 2019-09-01 | CAS: 59-23-4

Carbohydrate Research published new progress about Biosensors. 59-23-4 belongs to class alcohols-buliding-blocks, name is (2R,3S,4S,5R)-2,3,4,5,6-Pentahydroxyhexanal, and the molecular formula is C6H12O6, Quality Control of 59-23-4.

Sharma, Mamta published the artcileNovel electrochemical sensing of galactose using GalOxNPs/CHIT modified pencil graphite electrode, Quality Control of 59-23-4, the main research area is galactose oxidase nanoparticle chitosan electrode biosensor galactose baby food; Better; Biosensor; Chitosan; Galactose; Nanoparticle.

For the construction of galactose biosensor, chitosan was electropolymerised onto the pencil graphite electrode. This chitosan modified pencil graphite electrode acts as good matrix for immobilization of enzyme nanoparticles of galactose oxidase. Development of this nanocomposite was further confirmed by Fourier transform IR spectroscopy and SEM. The presence of chitosan makes the present galactose biosensor more efficient, reproducible and stable. The sensitivity was reported 7 × 10-3 mA/mM/cm2 with linear range from 0.05 to 25 mM and better detection limit of 0.05 mM. When the solution of galactose was spiked with 0.5 mM and 1 mM, the anal. recoveries were found 98.6% and 97.6%. A better storage stability was achieved (90days) when compared to earlier reported biosensors.

Carbohydrate Research published new progress about Biosensors. 59-23-4 belongs to class alcohols-buliding-blocks, name is (2R,3S,4S,5R)-2,3,4,5,6-Pentahydroxyhexanal, and the molecular formula is C6H12O6, Quality Control of 59-23-4.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Chavez-Marquez, Alejandra’s team published research in Molecules in 2022 | CAS: 505-10-2

Molecules published new progress about Biomarkers. 505-10-2 belongs to class alcohols-buliding-blocks, name is 3-(Methylthio)propan-1-ol, and the molecular formula is C4H10OS, Application In Synthesis of 505-10-2.

Chavez-Marquez, Alejandra published the artcileCharacterization of Cabernet Sauvignon Wines by Untargeted HS-SPME GC-QTOF-MS, Application In Synthesis of 505-10-2, the main research area is furfuryl ethyl ether acetoin acetic acid alpha terpineol metabolomics; HS-SPME GC-QTOFMS; Mexican wine; metabolomics; untargeted method validation; wine.

Untargeted metabolomics approaches are emerging as powerful tools for the quality evaluation and authenticity of food and beverages and have been applied to wine science. However, most fail to report the method validation, quality assurance and/or quality control applied, as well as the assessment through the metabolomics-methodol. pipeline. Knowledge of Mexican viticulture, enol. and wine science remains scarce, thus untargeted metabolomics approaches arise as a suitable tool. The aim of this study is to validate an untargeted HS-SPME-GC-qTOF/MS method, with attention to data processing to characterize Cabernet Sauvignon wines from two vineyards and two vintages. Validation parameters for targeted methods are applied in conjunction with the development of a recursive anal. of data. The combination of some parameters for targeted studies (repeatability and reproducibility < 20% RSD; linearity > 0.99; retention-time reproducibility < 0.5% RSD; match-identification factor < 2.0% RSD) with recursive anal. of data (101 entities detected) warrants that both chromatog. and spectrometry-processing data were under control and provided high-quality results, which in turn differentiate wine samples according to site and vintage. It also shows potential biomarkers that can be identified. This is a step forward in the pursuit of Mexican wine characterization that could be used as an authentication tool. Molecules published new progress about Biomarkers. 505-10-2 belongs to class alcohols-buliding-blocks, name is 3-(Methylthio)propan-1-ol, and the molecular formula is C4H10OS, Application In Synthesis of 505-10-2.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Branco, Renato Chaves Souto’s team published research in Journal of Cellular Physiology in 2019 | CAS: 97-67-6

Journal of Cellular Physiology published new progress about Biomarkers. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Recommanded Product: (S)-2-hydroxysuccinic acid.

Branco, Renato Chaves Souto published the artcileProtein malnutrition mitigates the effects of a high-fat diet on glucose homeostasis in mice, Recommanded Product: (S)-2-hydroxysuccinic acid, the main research area is mouse glucose homeostasis HFD protein malnutrition; fat-enriched diet; gastrocnemius; insulin sensitivity; protein restriction.

Nutrient malnutrition, during the early stages of development, may facilitate the onset of metabolic diseases later in life. However, the consequences of nutritional insults, such as a high-fat diet (HFD) after protein restriction, are still controversial. We assessed overall glucose homeostasis and mol. markers of mitochondrial function in the gastrocnemius muscle of protein-restricted mice fed an HFD until early adulthood. Male C57BL/6 mice were fed a control (14% protein-control diet) or a protein-restricted (6% protein-restricted diet) diet for 6 wk. Afterward, mice received an HFD or not for 8 wk (mice fed a control diet and HFD [CH] and mice fed a protein-restricted diet and HFD [RH]). RH mice showed lower weight gain and fat accumulation and did not show an increase in fasting plasma glucose and insulin levels compared with CH mice. RH mice showed higher energy expenditure, increased citrate synthase, peroxisome-proliferator-activated receptor gamma coactivator 1-alpha protein content, and higher levels of malate and α-ketoglutarate compared with CH mice. Moreover, RH mice showed increased AMPc-dependent kinase and acetyl coenzyme-A (CoA) carboxylase phosphorylation, lower i.m. triacylglycerol content, and similar malonyl-CoA levels. In conclusion, protein undernourishment after weaning does not potentiate fat accumulation and insulin resistance in adult young mice fed an HFD. This outcome seems to be associated with increased skeletal muscle mitochondrial oxidative capacity and reduced lipids accumulation.

Journal of Cellular Physiology published new progress about Biomarkers. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Recommanded Product: (S)-2-hydroxysuccinic acid.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xiang, Xiao-le’s team published research in Journal of the Science of Food and Agriculture in 2019 | CAS: 111-87-5

Journal of the Science of Food and Agriculture published new progress about Biomarkers. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, Synthetic Route of 111-87-5.

Xiang, Xiao-le published the artcileNon-destructive characterization of egg odor and fertilization status by SPME/GC-MS coupled with electronic nose, Synthetic Route of 111-87-5, the main research area is egg odor fertilization volatile organic compound SPME electronic nose; SPME/GC-MS; electronic nose; fertile eggs; fertilized eggs; infertile eggs; odor; unfertilized eggs.

BACKGROUND : Early and non-destructive identification of fertile (F) eggs is a difficult task in the process of breeding laying hens. The odors emitted from unfertilized (UF), infertile (IF), and fertile (F) eggs were characterized by solid-phase microextraction / gas chromatograph-mass spectrometry (SPME/GC-MS) and electronic nose (E-nose) to determine their differences by principal component, partial least squares, and canonical discriminant analyses. RESULTS : A total of 14 volatiles were identified in unhatched shell white Leghorn eggs, such as nonanal, decanal, 6-methyl-5-hepten-2-one, and 6,10-dimethyl-5,9-undecadien-2-one. Cedrene and decanal contributed greatly to the classification of UF and fertilized (Fd)/IF eggs; cedrene, decanal, 1-octanol and hexanal contributed greatly to the distinction between UF and IF eggs; heptanal might be the potential marker to determine F/IF eggs. P40/1, P10/2, P10/1, TA/2, T40/2 and T30/1, P30/1, P40/2, PA/2, T40/2 mostly contributed to the distinction between UF and Fd eggs and between F and IF eggs, resp. Canonical discriminant anal. presented superior differentiating efficiency for almost all groups, and the odor differences between UF and Fd eggs were significantly larger than the differences between F and IF eggs. CONCLUSION : Solid-phase microextraction / gas chromatograph-mass spectrometer combined with E-nose may have the potential to non-destructively distinguish UF, F, and IF eggs, which will provide a new perspective to understand the differences among them. © 2018 Society of Chem. Industry.

Journal of the Science of Food and Agriculture published new progress about Biomarkers. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, Synthetic Route of 111-87-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Golomb, Beatrice A.’s team published research in International Journal of Environmental Research and Public Health in 2021 | CAS: 97-67-6

International Journal of Environmental Research and Public Health published new progress about Biomarkers. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Recommanded Product: (S)-2-hydroxysuccinic acid.

Golomb, Beatrice A. published the artcileA pilot study of bioenergetic marker relationships in gulf war illness: phosphocreatine recovery vs. citric acid cycle intermediates, Recommanded Product: (S)-2-hydroxysuccinic acid, the main research area is phosphocreatine alpha ketoglutarate biomarker Gulf War illness; 31-phosphorus magnetic resonance spectroscopy; Gulf War illness; bioenergetics; citric acid cycle; veterans.

Impaired bioenergetics have been reported in veterans with Gulf War illness (VGWIs), including prolonged post-exercise recovery of phosphocreatine (PCr-R) assessed with 31Phosphorus magnetic resonance spectroscopy. The citric acid cycle (CAC) is considered the most important metabolic pathway for supplying energy, with relationships among CAC markers reported to shift in some but not all impaired bioenergetic settings. We sought to assess relations of CAC markers to one another and to PCr-R. Participants were 33 VGWIs and 33 healthy controls 1:1 matched on age-sex-ethnicity. We assessed seven CAC intermediates, and evaluated PCr-R in a subset of matched case-control pairs (N = 14). CAC markers did not significantly differ between cases and controls. Relationships of alpha-ketoglutarate to malate, isocitrate, and succinate were strongly significant in cases with materially weaker relationships in controls, suggesting possible shifts in these markers in concert in VGWIs. PCr-R correlated strongly with five of seven CAC markers in controls (succinate, malate, fumarate, citrate, isocitrate, range r = -0.74 to -0.88), but bore no relationship in VGWIs. In summary, PCr-R related significantly to CAC markers in healthy controls, but not VGWIs. In contrast, relations of CAC markers to one another appeared to shift (often strengthen) in VGWIs.

International Journal of Environmental Research and Public Health published new progress about Biomarkers. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Recommanded Product: (S)-2-hydroxysuccinic acid.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Maixnerova, Dita’s team published research in PLoS One in 2019 | CAS: 59-23-4

PLoS One published new progress about Biomarkers. 59-23-4 belongs to class alcohols-buliding-blocks, name is (2R,3S,4S,5R)-2,3,4,5,6-Pentahydroxyhexanal, and the molecular formula is C6H12O6, Product Details of C6H12O6.

Maixnerova, Dita published the artcileGalactose-deficient IgA1 and the corresponding IgG autoantibodies predict IgA nephropathy progression, Product Details of C6H12O6, the main research area is galactose deficiency serum IgA nephropathy progression IgG autoantibody.

Background: IgA nephropathy (IgAN), the most common primary glomerulonephritis worldwide, has serious outcomes with end-stage renal disease developing in 30-50% of patients. The diagnosis requires renal biopsy. Due to its inherent risks, non-invasive approaches are needed. Methods: We evaluated 91 Czech patients with biopsy-proven IgAN who were assessed at time of diagnosis for estimated glomerular filtration rate (eGFR), proteinuria, microscopic hematuria, and hypertension, and then followed prospectively. Serum samples collected at diagnosis were analyzed for galactose-deficient IgA1 (Gd-IgA1) using new native-IgA1 and established neuraminidase-treated-IgA1 tests, Gd-IgA1-specific IgG autoantibodies, discriminant anal. and logistic regression model assessed correlations with renal function and Oxford classification (MEST score). Results: Serum levels of native (P <0.005) and neuraminidase-treated (P <0.005) Gd-IgA1 were associated with the rate of eGFR decline. A higher relative degree of galactose deficiency in native serum IgA1 predicted a faster eGFR decline and poor renal survival (P <0.005). However, Gd-IgA1 has not differentiated patients with low vs. high baseline eGFR. Furthermore, patients with high baseline eGFR that was maintained during follow-up were characterized by low serum levels of Gd-IgA1-specific IgG autoantibodies (P = 0.003). Conclusions: Including levels of native and neuraminidase-treated Gd-IgA1 and Gd-IgA1-specific autoantibodies at diagnosis may aid in the prognostication of disease progression in Czech patients with IgAN. Future tests will assess utility of these biomarkers in larger patients cohorts from geog. distinct areas. PLoS One published new progress about Biomarkers. 59-23-4 belongs to class alcohols-buliding-blocks, name is (2R,3S,4S,5R)-2,3,4,5,6-Pentahydroxyhexanal, and the molecular formula is C6H12O6, Product Details of C6H12O6.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts