Chen, Ziyang’s team published research in Carbohydrate Polymers in 2022-01-01 | CAS: 7575-23-7

Carbohydrate Polymers published new progress about Aerogels. 7575-23-7 belongs to class alcohols-buliding-blocks, name is Pentaerythritol tetra(3-mercaptopropionate), and the molecular formula is C17H28O8S4, Synthetic Route of 7575-23-7.

Chen, Ziyang published the artcileHydrophobic and thermal-insulating aerogels based on rigid cellulose nanocrystal and elastic rubber, Synthetic Route of 7575-23-7, the main research area is hydrophobic thermal insulating aerogel cellulose nanocrystal elastic rubber; Aerogels; Cellulose nanocrystals; Click reaction; Rubber.

Inspired from the ancient China philosophy of “”coupling hardness with softness””, we attempted the combination of rigid cellulose nanocrystals (CNC) and elastic rubbers to solve the limitations of structural brittleness and water sensitivity of CNC-based aerogels. Three rubber chains with the different chem. structures (silicon rubber, 1,2-polybutadiene, styreneic block copolymer) were covalently bonded on the CNC porous skeleton based on thiol-ene click chem., to fabricate the CNC/rubber composite aerogels. With the introduction of moderate loading levels of rubber, the composites aerogels exhibited low d. and shrinkage, high porosity and sp. surface area and improved mech. performance. Furthermore, the presence of rubber components completely changed the hydrophilic nature of cellulose skeleton as the hydrophobic aerogels, contributing the superior solvents resistance and self-cleaning property. With their advantages on mech. stability, heat insulation and hydrophobicity, the fabricated aerogels in this study exhibited the high added values in various potential applications.

Carbohydrate Polymers published new progress about Aerogels. 7575-23-7 belongs to class alcohols-buliding-blocks, name is Pentaerythritol tetra(3-mercaptopropionate), and the molecular formula is C17H28O8S4, Synthetic Route of 7575-23-7.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Napolitano, Gaetana’s team published research in Journal of Physiology and Biochemistry in 2022-05-31 | CAS: 97-67-6

Journal of Physiology and Biochemistry published new progress about Ablation. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Formula: C4H6O5.

Napolitano, Gaetana published the artcileOxidative damage and mitochondrial functionality in hearts from KO UCP3 mice housed at thermoneutrality, Formula: C4H6O5, the main research area is UCP oxidative damage heart mitochondria thermoneutrality phosphorylation; Calnexin; EIF2α; GRP78 BIP; Heart; Hsp 60; Mitochondrial complexes; Oxidative stress; Oxygen consumption; Thermoneutrality; UCP3.

The antioxidant role of mitochondrial uncoupling protein 3 (UCP3) is controversial. This work aimed to investigate the effects of UCP3 on the heart of mice housed at thermoneutral temperature, an exptl. condition that avoids the effects of thermoregulation on mitochondrial activity and redox homeostasis, preventing the alterations related to these processes from confusing the results caused by the lack of UCP3. WT and KO UCP3 mice were acclimatized at 30°C for 4 wk and hearts were used to evaluate metabolic capacity and redox state. Tissue and mitochondrial respiration, the activities of the mitochondrial complexes, and the protein expression of mitochondrial complexes markers furnished information on mitochondrial functionality. The levels of lipid and protein oxidative damage markers, the activity of antioxidant enzymes, the reactive oxygen species levels, and the susceptibility to in vitro Fe-ascorbate-induced oxidative stress furnished information on redox state. UCP3 ablation reduced tissue and mitochondrial respiratory capacities, not affecting the mitochondrial content. In KO UCP3 mice, the mitochondrial complexes activities were lower than in WT without changes in their content. These effects were accompanied by an increase in the level of oxidative stress markers, ROS content, and in vitro susceptibility to oxidative stress, notwithstanding that the activities of antioxidant enzymes were not affected by UCP3 ablation. Such modifications are also associated with enhanced activation/phosphorylation of EIF2α, a marker of integrated stress response and endoplasmic reticulum stress (GRP778 BIP). The lack of UCP3 makes the heart more prone to oxidative insult by reducing oxygen consumption and increasing ROS. Our results demonstrate that UCP3 helps the cell to preserve mitochondrial function by mitigating oxidative stress.

Journal of Physiology and Biochemistry published new progress about Ablation. 97-67-6 belongs to class alcohols-buliding-blocks, name is (S)-2-hydroxysuccinic acid, and the molecular formula is C4H6O5, Formula: C4H6O5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Hodges, Geoff’s team published research in Environmental Sciences Europe in 2019-12-31 | CAS: 111-87-5

Environmental Sciences Europe published new progress about Partition. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, COA of Formula: C8H18O.

Hodges, Geoff published the artcileA comparison of log Kow (n-octanol-water partition coefficient) values for non-ionic, anionic, cationic and amphoteric surfactants determined using predictions and experimental methods, COA of Formula: C8H18O, the main research area is partition coefficient surfactant prediction.

Surfactants are widely used across the globe both in industrial and consumer products. The n-octanol/water partition ratio or coefficient (log Kow) and n-octanol/water distribution coefficient (log D) are key parameters in environmental risk assessment of chems. as they are often used to estimate the environmental fate and bioavailability and thus exposure and toxicity of a compound Determining log Kow data for surfactants is a tech. challenge due to their amphiphilic properties. Currently several existing exptl. OECD methods (e.g. slow-stirring, HPLC, solubility ratio) and QSPR models are available for log Kow/D measurement or prediction. However, there are concerns that these methods have not been fully validated for surfactants and may not be applicable due to the specific phase behavior of surfactants. Results: The current methods were evaluated for the four surfactant classes (non-ionic, anionic, cationic and amphoteric). The solubility ratio approach, based on comparative n-octanol and water solubility measurements, did not generate robust or accurate data. The HPLC method generates consistently higher log Kow values than the slow-stirring method for non-ionics, but this pos. bias could be removed using reference surfactants with log Kow values determined using the slow-stirring method. The slow-stirring method is the most widely applicable exptl. method for generating log Kow/D data for all the surface-active test compounds Generally, QSPR-predicted log Kow/D values do not correlate well with exptl. values, apart for the group of non-ionic surfactants. Relatively, large differences in predicted log Kow/D values were observed when comparing various QSPR models, which were most noticeable for the ionised surfactants. Conclusions: The slow-stirring method is the most widely applicable exptl. method for generating log Kow/D data for all the four surfactant classes. A weight of evidence approach is considered appropriate for non-ionic surfactants using exptl. and model predications. However, it is more difficult to apply this approach to ionisable surfactants. Recommendations are made for the preferred existing QSPR predictive methods for determination of log Kow/D values for the surfactant classes. Investigation of newer alternative exptl. log Kow methods as well as more biol. relevant and methodol. defensible alternative methods for describing partitioning of surfactants are recommended.

Environmental Sciences Europe published new progress about Partition. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, COA of Formula: C8H18O.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Hanson, Kaila B.’s team published research in Chemosphere in 2019-03-31 | CAS: 111-87-5

Chemosphere published new progress about Partition. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, Category: alcohols-buliding-blocks.

Hanson, Kaila B. published the artcileEstimating n-octanol-water partition coefficients for neutral highly hydrophobic chemicals using measured n-butanol-water partition coefficients, Category: alcohols-buliding-blocks, the main research area is octanol butanol water partition coefficient; Collander equation; n-Butanol/water partition coefficients; n-octanol/water partition coefficients (K(OW)).

Direct measurement of the n-octanol partition coefficients (KOW) for highly hydrophobic organic chems. is extremely difficult because of the extremely low concentrations present in the water phase. n-Butanol/water partition coefficients (KBW) are generally much lower than KOW due to the increased solubility of solute in the alc. saturated aqueous phase, and therefore become easier to measure. We measured the KBW for 25 neutral organic chems. having measured log KOWs ranging from 2 to 9 and 4 addnl. highly hydrophobic chems., with unmeasured KOWs, having estimated log KOWs ranging from 6 to 18. The measured log KBW and log KOW values were linearly related, r2 = 0.978, and using the regression developed from the data, KOWs were predicted for the 4 highly hydrophobic chems. with unmeasured KOWs. The resulting predictions were orders of magnitude lower than those predicted by a variety of computational models and suggests the estimates of KOW in the literature for highly hydrophobic chems. (i.e., log KOW greater than 10) are likely incorrect by several orders of magnitude.

Chemosphere published new progress about Partition. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, Category: alcohols-buliding-blocks.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Ogden, Phillip B.’s team published research in Journal of Chromatography A in 2019-09-13 | CAS: 111-87-5

Journal of Chromatography A published new progress about Partition. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, Recommanded Product: n-Octanol.

Ogden, Phillip B. published the artcileReversed phase HPLC with high temperature ethanol/water mobile phases as a green alternative method for estimation of octanol/water partition coefficients, Recommanded Product: n-Octanol, the main research area is high temperature liquid chromatog ethanol water mobile phase; octanol partition coefficient linear solvation energy relationship; Ethanol/water mobile phases; High temperature liquid chromatography; Linear solvation energy relationships; Octanol/water partition coefficient; Snyder-soczewinski equation.

High temperature ethanol/water was explored as a green eluent in the reversed-phase liquid chromatog. approximation of pure water retention (log kw) and subsequent estimation of the octanol/water partition coefficient (log P) via the Collander equation and the Leave-One-Out method. As part of this work, linear solvation energy relationships were employed to compare the log kw extrapolated systems based on high temperature ethanol/water, ambient acetonitrile/water, and ambient methanol/water mobile phases. Based on the comparisons of the three organic modifiers, high temperature ethanol/water mobile phases were observed to provide the best estimation of log P. This conclusion is based on a high log P correlation of 0.968 R2 and a near unity cos θ value of 0.997 between LSER coefficient vectors of ethanol/water estimated log P and octanol/water log P systems. The method employed in this work, further, provided high correlation for the hydrogen-bonding basicity term between the two systems.

Journal of Chromatography A published new progress about Partition. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, Recommanded Product: n-Octanol.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Kolobova, E.’s team published research in Catalysis Today in 2019-08-01 | CAS: 111-87-5

Catalysis Today published new progress about Oxidation. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, Synthetic Route of 111-87-5.

Kolobova, E. published the artcileSelective oxidation of n-octanol on unmodified and La-modified nanogold catalysts: Effect of metal content, Synthetic Route of 111-87-5, the main research area is gold titania lanthanum catalyst octanol oxidation.

We investigated the influence of metal loading in gold catalysts supported on titania, either unmodified or La-modified, on their catalytic performance and the formation of active sites for selective oxidation of n-octanol under mild conditions. Catalysts were characterized by BET, EDX, ICP, HRTEM, FTIR CO and XPS. Gold content had a significant effect on the catalytic properties of unmodified catalysts: activity of Au/TiO2 increased by increasing the metal load. However, in the case of a lanthanum-modified support samples, an increase of gold content from 0.5 to 4 weight% had no effect on its activity (ca. 40% conversion after 6 h for all catalysts). This catalytic behavior is due to a change in the surface concentration of Au+ ions. For the unmodified catalysts, the surface concentration of Au+ ions increased with increasing gold loading, and, as a consequence, a significant increase in activity was observed For La-modified catalysts, the surface concentration of Au+ ions is almost the same for all gold concentrations; as a result, no increase in activity was observed with the increase in gold content. It points to Au+ ions as the most probable active sites for the studied reaction.

Catalysis Today published new progress about Oxidation. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, Synthetic Route of 111-87-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Hirsjarvi, Pekka’s team published research in Suomen Kemistilehti B in 1961 | CAS: 42822-86-6

Suomen Kemistilehti B published new progress about Oxidation. 42822-86-6 belongs to class alcohols-buliding-blocks, name is 2-(2-Hydroxypropan-2-yl)-5-methylcyclohexanol, and the molecular formula is C10H20O2, Application of 2-(2-Hydroxypropan-2-yl)-5-methylcyclohexanol.

Hirsjarvi, Pekka published the artcileFormation of camphene glycol carbonate in the oxidation of camphene with SeO2, Application of 2-(2-Hydroxypropan-2-yl)-5-methylcyclohexanol, the main research area is .

cf. CA 53, 16194g. Camphene glycol carbonate (I), m. 147-8° was separated by distillation or adsorption chromatog. from the oxidation products of camphene with SeO2 in boiling Ac2O. Alk. hydrolysis of I yielded camphene glycol (II), m. 196-8°. II formed a mono-p-tosylate, m. 84.5-7.0°, which formed camphene hydrate, m. 152-5° on reduction with LiAlH4. The formation of I by SeO2 is a stereospecific reaction.

Suomen Kemistilehti B published new progress about Oxidation. 42822-86-6 belongs to class alcohols-buliding-blocks, name is 2-(2-Hydroxypropan-2-yl)-5-methylcyclohexanol, and the molecular formula is C10H20O2, Application of 2-(2-Hydroxypropan-2-yl)-5-methylcyclohexanol.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Lopez, Kenneth’s team published research in Journal of Computer-Aided Molecular Design in 2021-08-31 | CAS: 111-87-5

Journal of Computer-Aided Molecular Design published new progress about Molecules. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, HPLC of Formula: 111-87-5.

Lopez, Kenneth published the artcileMultiple linear regression models for predicting the n-octanol/water partition coefficients in the SAMPL7 blind challenge, HPLC of Formula: 111-87-5, the main research area is octanol water sulfonamide partition coefficient; Empirical methods; Multiple linear regression; N-sulfonamides; SAMPL7 blind challenge; n-Octanol/water partition coefficients.

A multiple linear regression model called MLR-3 is used for predicting the exptl. n-octanol/water partition coefficient (log PN) of 22 N-sulfonamides proposed by the organizers of the SAMPL7 blind challenge. The MLR-3 method was trained with 82 mols. including drug-like sulfonamides and small organic mols., which resembled the main functional groups present in the challenge dataset. Our model, submitted as “”TFE-MLR””, presented a root-mean-square error of 0.58 and mean absolute error of 0.41 in log P units, accomplishing the highest accuracy, among empirical methods and also in all submissions based on the ranked ones. Overall, the results support the appropriateness of multiple linear regression approach MLR-3 for computing the n-octanol/water partition coefficient in sulfonamide-bearing compounds In this context, the outstanding performance of empirical methodologies, where 75% of the ranked submissions achieved root-mean-square errors < 1 log P units, support the suitability of these strategies for obtaining accurate and fast predictions of physicochem. properties as partition coefficient of bioorganic compounds Journal of Computer-Aided Molecular Design published new progress about Molecules. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, HPLC of Formula: 111-87-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Burridge, Kevin M.’s team published research in Biomacromolecules in 2020-03-09 | CAS: 2212-32-0

Biomacromolecules published new progress about Liposomes. 2212-32-0 belongs to class alcohols-buliding-blocks, name is N2-(2-Hydroxyethyl)-N1,N1,N2-trimethyl-1,2-ethylenediamine, and the molecular formula is C7H18N2O, Category: alcohols-buliding-blocks.

Burridge, Kevin M. published the artcileSimple derivatization of RAFT-synthesized styrene-maleic anhydride copolymers for lipid disk formulations, Category: alcohols-buliding-blocks, the main research area is RAFT styrene maleic anhydride copolymer nucleophile derivative lipid disk.

Styrene-maleic acid copolymers have received significant attention because of their ability to interact with lipid bilayers and form styrene-maleic acid copolymer lipid nanoparticles (SMALPs). However, these SMALPs are limited in their chem. diversity, with only Ph and carboxylic acid functional groups, resulting in limitations because of sensitivity to low pH and high concentrations of divalent metals. To address this limitation, various nucleophiles were reacted with the anhydride unit of well-defined styrene-maleic anhydride copolymers in order to assess the potential for a new lipid disk nanoparticle-forming species. These styrene-maleic anhydride copolymer derivatives (SMADs) can form styrene-maleic acid derivative lipid nanoparticles (SMADLPs) when they interact with lipid mols. Polymers were synthesized, purified, characterized by Fourier-transform IR spectroscopy, gel permeation chromatog., and NMR and then used to make disk-like SMADLPs, whose sizes were measured by dynamic light scattering (DLS). The SMADs form lipid nanoparticles, observable by DLS and transmission electron microscopy, and were used to reconstitute a spin-labeled transmembrane protein, KCNE1. The polymer method reported here is facile and scalable and results in functional and robust polymers capable of forming lipid nanodisks that are stable against a wide pH range and 100 mM magnesium.

Biomacromolecules published new progress about Liposomes. 2212-32-0 belongs to class alcohols-buliding-blocks, name is N2-(2-Hydroxyethyl)-N1,N1,N2-trimethyl-1,2-ethylenediamine, and the molecular formula is C7H18N2O, Category: alcohols-buliding-blocks.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Romero, Concepcion’s team published research in Food Chemistry in 2021-02-01 | CAS: 111-87-5

Food Chemistry published new progress about Lethality. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, Computed Properties of 111-87-5.

Romero, Concepcion published the artcilePacking black ripe olives in acid conditions, Computed Properties of 111-87-5, the main research area is oxygen permeability lipid oxidation pentnal black ripe olive; Acid; Black ripe olive; Lipid oxidation; Oxygen; Packing.

The type of container (airtight and pouches with different O2 permeability) and packing conditions (cover brine, air or N2 atm) has been studied to preserve black ripe olives in acid medium for a year. Unlike the traditional sterilized product, these acidified olives only needed pasteurization to assure its microbial safety, the absence of acrylamide being an addnl. advantage. Surprisingly, an increase in the oxygen diffusion through the films (i) faded the black color of the olives, (ii) softened the fruit that lost around 33% of its initial firmness in only 6 mo, and (iii) produced the lipids oxidation forming volatile compounds that transmitted an abnormal flavor which tasters identified as rancid. Therefore, ripe olives in acid medium must be packed in airtight containers such as glass jars, cans o metallic pouches with cover brine or N2 atm. The addition of calcium is recommended to avoid olive softening.

Food Chemistry published new progress about Lethality. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, Computed Properties of 111-87-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts