Huang, Ling et al. published their research in Molecules in 2022 | CAS: 27208-80-6

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Product Details of 27208-80-6

Composition of Pinot Noir Wine from Grapevine Red Blotch Disease-Infected Vines Managed with Exogenous Abscisic Acid Applications was written by Huang, Ling;Alcazar Magana, Armando;Skinkis, Patricia A.;Osborne, James;Qian, Yanping L.;Qian, Michael C.. And the article was included in Molecules in 2022.Product Details of 27208-80-6 The following contents are mentioned in the article:

Grapevine red blotch disease (GRBD) has neg. effects on grape development and impacts berry ripening. Abscisic acid (ABA) is a plant growth regulator involved in the initiation of berry ripening. Exogenous abscisic acid application was compared to an unsprayed control on GRBD-pos. Pinot noir vines during two vintages, and the total monomeric anthocyanin, total phenolics, phenolic composition, and volatile profile were measured in wines. In addition, untargeted metabolites were profiled using high-resolution LC-MS/MS. Results showed that the wine composition varied by vintage year and was not consistent with ABA application. Wines from the ABA treatment had a lower total anthocyanin and total phenolic content in one year. The untargeted high-resolution LC-MS/MS anal. showed a higher abundance of phenolic compounds in ABA wines in 2019, but lower in 2018. The wine volatile compounds of ABA treatments varied by vintage. There were higher levels of free β-damascenone, β-ionone, nerol, and several fermentation-derived esters, acids, and alcs. in ABA wines, but these were not observed in 2019. Lower 3-isobutyl-2-methoxypyrazine (IBMP) was also observed in wines with ABA treatment in 2019. The results demonstrated that ABA application to the fruit zones did not consistently mitigate the adverse impacts of GRBD on Pinot noir wines. This study involved multiple reactions and reactants, such as (2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6Product Details of 27208-80-6).

(2S,3R,4S,5S,6R)-2-(3-Hydroxy-5-((E)-4-hydroxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (cas: 27208-80-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Product Details of 27208-80-6

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Ocak, Hale et al. published their research in Journal of Materials Chemistry in 2021 | CAS: 106-21-8

3,7-Dimethyloctan-1-ol (cas: 106-21-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Name: 3,7-Dimethyloctan-1-ol

Extraordinary magnetic field effects on the LC phases of homochiral and racemic 4-cyanoresorcinol-based diamagnetic bent-core mesogens was written by Ocak, Hale;Bilgin Eran, Belkiz;Nuray, Sevgi;Ozkonstanyan, Aykun;Poppe, Silvio;Tschierske, Carsten. And the article was included in Journal of Materials Chemistry in 2021.Name: 3,7-Dimethyloctan-1-ol The following contents are mentioned in the article:

4-Cyanoresorcinol based bent-core compounds combining one branched chiral with one achiral linear end-chain have been synthesized in enatiomerically pure and one compound also in racemic form. All homochiral compounds form a chiral cybotactic nematic phase at relatively low temperature with a selective reflection ranging from the near IR to near UV. For the compound with the longest chains superparaelec. and antiferroelec. switching smectic phases were observed, whereas the corresponding racemate is non-polar. This is attributed to sterically induced polarization by the denser packing of uniform enantiomers due to chirality synchronization of the helical conformers. For the racemic mixture this chirality synchronization requires addnl. surface stabilization. There are unprecedented effects of an applied magnetic field (1 T) on the LC phases, leading to a layer shrinkage by 6-13% for the enantiomer and a layer expansion by 5-8% for the racemate. It is proposed that the magnetic field couples with the π-systems of the almost rod-like mols. For the racemate this increases the core order, whereas for the enantiomer the reduction of the heliconical twist is considered to provide the major effect. These magnetic field effects could lead to new applications of chiral LC materials at the cross-over between rod-like and bent shapes. This study involved multiple reactions and reactants, such as 3,7-Dimethyloctan-1-ol (cas: 106-21-8Name: 3,7-Dimethyloctan-1-ol).

3,7-Dimethyloctan-1-ol (cas: 106-21-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Name: 3,7-Dimethyloctan-1-ol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Tassler, Stephanie et al. published their research in Langmuir in 2019 | CAS: 923-61-5

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Recommanded Product: (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate

DNA Delivery Systems Based on Peptide-Mimicking Cationic Lipids-The Effect of the Co-Lipid on the Structure and DNA Binding Capacity was written by Tassler, Stephanie;Dobner, Bodo;Lampp, Lisa;Ziolkowski, Robert;Malinowska, Elzbieta;Woelk, Christian;Brezesinski, Gerald. And the article was included in Langmuir in 2019.Recommanded Product: (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate The following contents are mentioned in the article:

In continuation of previous work, we present a new promising DNA carrier, OO4, a highly effective peptide-mimicking lysine-based cationic lipid. The structural characteristics of the polynucleotide carrier system OO4 mixed with the commonly used co-lipid DOPE and the saturated phospholipid DPPE have been studied in two-dimensional and three-dimensional model systems to understand their influence on the phys.-chem. properties. The phase behavior of pure OO4 and its mixtures with DOPE and DPPE was studied at the air-water interface using a Langmuir film balance combined with IR reflection-absorption spectroscopy. In bulk, the self-assembling structures in the presence and absence of DNA were determined by small-angle and wide-angle X-ray scattering. The amount of adsorbed DNA to cationic lipid bilayers was measured using a quartz crystal microbalance. The choice of the co-lipid has an enormous influence on the structure and capability of binding DNA. DOPE promotes the formation of nonlamellar lipoplexes (cubic and hexagonal structures), whereas DPPE promotes the formation of lamellar lipoplexes. The correlation of the observed structures with the transfection efficiency and serum stability indicates that OO4/DOPE 1:3 lipoplexes with a DNA-containing cubic phase encapsulated in multilamellar structures seem to be most promising. This study involved multiple reactions and reactants, such as (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5Recommanded Product: (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate).

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Recommanded Product: (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Petrarca, Mateus Henrique et al. published their research in Journal of Chromatography A in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Category: alcohols-buliding-blocks

Multi-analyte gas chromatography-mass spectrometry method to monitor bisphenols, musk fragrances, ultraviolet filters, and pesticide residues in seafood was written by Petrarca, Mateus Henrique;Fernandes, Jose O.;Marmelo, Isa;Marques, Antonio;Cunha, Sara C.. And the article was included in Journal of Chromatography A in 2022.Category: alcohols-buliding-blocks The following contents are mentioned in the article:

A gas chromatog.-mass spectrometry method for the anal. of thirty-six anthropogenic contaminants in the edible portion of four distinct seafood items is reported. Considering the heterogeneous composition of algae, mussels, and lean/fatty fish muscles, a generic sample preparation based on the QuEChERS procedure combined with dispersive liquid-liquid microextraction (DLLME) with in situ acetylation was successfully applied for quantification of pesticide residues, bisphenols, musk fragrances and UV-filters. Matrix effects were influenced by the type of seafood, with the lowest effects being observed with EMR-lipid and graphitized carbon black sorbents in dispersive solid-phase extraction cleanup step. Method performance features were successful evaluated in the different seafood samples – algae, mussel, lean and fatty fish muscles, following the criteria established by SANTE/12682/2019 for anal. methods for pesticide residues anal. The detection and quantification of bisphenol F, musk fragrances (galaxolide and tonalide), UV-filters (2-ethylhexyl salicylate, 2-ethylhexyl 4-methoxycinnamate, and isoamyl 4-methoxycinnamate), and residues of permethrin in com. samples of algae, mussel and fish collected in a Portuguese estuary support the suitability of the proposed method for future seafood monitoring by food safety authorities. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Category: alcohols-buliding-blocks).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Shi, Honghui et al. published their research in LWT–Food Science and Technology in 2022 | CAS: 367-93-1

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Quality Control of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol

Dynamic changes in the chemical composition and metabolite profiles of drumstick (Moringa oleifera Lam.) leaf flour during fermentation was written by Shi, Honghui;Yang, Endian;Yang, Heyue;Huang, Xiaoling;Zheng, Mengxia;Chen, Xiaoyang;Zhang, Junjie. And the article was included in LWT–Food Science and Technology in 2022.Quality Control of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol The following contents are mentioned in the article:

Solid-state fermentation (SSF) using mixed strains can increase the nutritional value and antioxidant content of Moringa oliefera Lam. leaf flour (MLF). However, little is known about the chem. composition and metabolite profiles of MLF during the fermentation process. In this work, mixed strains of Aspergillus Niger, Candida utilis and Bacillus subtilis were inoculated into MLF for SSF. The MLF′s contents of crude protein (CP), crude fiber (CF), water soluble carbohydrate (WSC), reducing sugar, tannin and phytic acid all changed significantly as fermentation proceeded. A metabolomic anal. was performed using GC-TOF-MS, resulting in the identification of 347 metabolites. Fermentation with mixed strains significantly affected levels of amino acids, sugars, and organic acids; concentrations of most amino acids, oligosaccharides, organic acids, nucleosides, γ-aminobutyric acid (GABA), and myo-inositol were higher after 3 d of SSF than at the start. Addnl., several intermediate metabolites were detected in 3 d fermented MLF. The mixed microorganisms′ metabolic activity thus seems to peak after 3 d of fermentation under the tested conditions. These results provide new insights into the changes in the chem. composition and metabolite content of MLF during SSF and reveal possibilities for producing valuable compounds via this process. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Quality Control of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol).

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Quality Control of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Shah, Abdul Karim et al. published their research in Reaction Kinetics, Mechanisms and Catalysis in 2019 | CAS: 106-21-8

3,7-Dimethyloctan-1-ol (cas: 106-21-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.COA of Formula: C10H22O

One pot menthol synthesis via hydrogenations of citral and citronellal over montmorillonite-supported Pd/Ni-heteropoly acid bifunctional catalysts was written by Shah, Abdul Karim;Maitlo, Ghulamullah;Shah, Aqeel Ahmed;Channa, Iftekhar Ahmed;Kandhro, Ghulam Abbas;Maitlo, Hubdar Ali;Bhatti, Umair Hassan;Shah, Ahmed;Memon, Abdul Qayoom;Jatoi, Abdul Sattar;Park, Yeung Ho. And the article was included in Reaction Kinetics, Mechanisms and Catalysis in 2019.COA of Formula: C10H22O The following contents are mentioned in the article:

Menthol synthesis is possible through citral and citronellal hydrogenations via following multistage chem. reactions such as hydrogenation and cyclization. This research mainly focuses on a design of selective, active and cost-effective metal-acid (bifunctional) catalysts for menthol production via citral and citronellal hydrogenations. More specifically, Pd and Ni metals were impregnated over acidic support (e.g., hetero-poly acid supported montmorillonite, HPA_MM). The prepared catalysts were characterized by BET, pyridine adsorption and amine titration methods. Some of the most important parameters such as metal type and loading; applied pressure and reaction time have been investigated throughout this work. The obtained results reveals that the 8 wt% Ni-HPA-MM catalyst (Cat-5) has produced 63% menthols (initial reaction rate 0.126 mmol/min) from citral hydrogenation (80°C, 1.0 MPa) within 24 h. Similarly, during lower applied pressure (0.5 MPa), the production of menthol was significantly improved (approx. 98% of menthol, initial reaction rate ~0.138 mmol/min) with the application of 8 wt% Ni-HPA-MM catalyst (Cat-5) in citronellal hydrogenation. Higher menthol selectivity was achieved from both reactions (citral and citronellal hydrogenation) which might be due to the presence of strong Lewis and medium Bronsted acid sites. This study involved multiple reactions and reactants, such as 3,7-Dimethyloctan-1-ol (cas: 106-21-8COA of Formula: C10H22O).

3,7-Dimethyloctan-1-ol (cas: 106-21-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.COA of Formula: C10H22O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Pandit, Shraddha et al. published their research in Journal of Hazardous Materials in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Application In Synthesis of 4,4′-Methylenediphenol

Computational risk assessment framework for the hazard analysis of bisphenols and quinone metabolites was written by Pandit, Shraddha;Singh, Prakrity;Parthasarathi, Ramakrishnan. And the article was included in Journal of Hazardous Materials in 2022.Application In Synthesis of 4,4′-Methylenediphenol The following contents are mentioned in the article:

Bisphenol A (BPA) is a widely used chem. in plastics but its proven harmful effects has led to the replacement and production of its analogs that might also induce hazard as well as associated risks. To elucidate the adverse impact of the BPA analogs, a comprehensive computational framework is developed which applies toxicogenomics aligned with D. Functional Theory (DFT) and Mol. Dynamics (MD) based approaches to understand the toxic potential of quinone metabolites of Bisphenol F (BPF) and 3,3′-dimethylbisphenol A (DMBPA). The obtained results indicate a similar chem. reactivity profile for these metabolites of bisphenols to BPA metabolite. MD simulation revealed that the quinone metabolites tend to interact with the DNA comprising hydrogen bonding, van der Waals forces, and electrostatic interactions as an onset for covalent binding to adduct formation. Structural anal. suggests that interactions with DC9, DG10, DG16, DA17, DA18, and DT19 play a crucial role in stabilizing the quinone metabolite in the interactive pocket of DNA. These observations are demonstrating that BPF and DMBPA have the potential to impose genotoxicity via forming the quinone metabolite adducts. Combination of DFT and MD-based computational approaches providing a structure-activity-toxicity spectrum of chems. can serve for the purpose of risk assessment. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Application In Synthesis of 4,4′-Methylenediphenol).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Alcohols are weak acids. The most acidic simple alcohols (methanol and ethanol) are about as acidic as water, and most other alcohols are somewhat less acidic. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Application In Synthesis of 4,4′-Methylenediphenol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Kuehnel, Ronja Marie et al. published their research in Analyst (Cambridge, United Kingdom) in 2019 | CAS: 923-61-5

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.COA of Formula: C37H74NO8P

Short-chain lipid-conjugated pH sensors for imaging of transporter activities in reconstituted systems and living cells was written by Kuehnel, Ronja Marie;Grifell-Junyent, Marta;Joergensen, Ida Louise;Kemmer, Gerdi Christine;Schiller, Juergen;Palmgren, Michael;Justesen, Bo Hoejen;Guenther Pomorski, Thomas. And the article was included in Analyst (Cambridge, United Kingdom) in 2019.COA of Formula: C37H74NO8P The following contents are mentioned in the article:

The design of ion sensors has gained importance for the study of ion dynamics in cells, with fluorescent proton nanosensors attracting particular interest because of their applicability in monitoring pH gradients in biol. microcompartments and reconstituted membrane systems. The authors describe the improved synthesis, photophys. properties and applications of pH sensors based on amine-reactive pHrodo esters and short-chain lipid derivatives of phosphoethanolamine. The major features of these novel probes include strong fluorescence under acidic conditions, efficient partitioning into membranes, and extractability by back exchange to albumin. These features allow for the selective labeling of the inner liposomal leaflet in reconstituted membrane systems for studying proton pumping activities in a quant. fashion, as demonstrated by assaying the activity of a plant plasma membrane H+-ATPase. Furthermore, the short-chain lipid-conjugated pH sensors enable the monitoring of pH changes from neutral to acidic conditions in the endocytic pathway of living cells. Collectively, the authors’ results demonstrate the applicability of short-chain lipid-conjugated sensors for in vivo and in vitro studies and thus pave the way for the design of lipid-conjugated sensors selective to other biol. relevant ions, e.g. calcium and sodium. This study involved multiple reactions and reactants, such as (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5COA of Formula: C37H74NO8P).

(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.COA of Formula: C37H74NO8P

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Castro, Gabriela et al. published their research in Science of the Total Environment in 2022 | CAS: 620-92-8

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Category: alcohols-buliding-blocks

Occurrence of bisphenols and benzophenone UV filters in wild brown mussels (Perna perna) from Algoa Bay in South Africa was written by Castro, Gabriela;Fourie, Amarein J.;Marlin, Danica;Venkatraman, Vishwesh;Gonzalez, Susana V.;Asimakopoulos, Alexandros G.. And the article was included in Science of the Total Environment in 2022.Category: alcohols-buliding-blocks The following contents are mentioned in the article:

Bisphenols and benzophenone UV filters are contaminants present in a wide variety of plastic materials and consumer products. The scientific attention towards these contaminants has increased in recent years due to their presence in microplastics, their ubiquitous occurrence in the environment, and their known endocrine disrupting health effects. In this study, the occurrence of nine bisphenol and five benzophenone UV-filter analogs was assessed in wild brown mussels (Perna perna) collected from different sampling sites along the coast of Algoa Bay, South Africa. Eleven out of fourteen target analytes were detected, and bisphenol AP (BPAP) was detected for the first time in mussels, presenting the highest median concentration of 150 ng g-1 dry weight (d.w.) and a detection frequency of 91%. Regarding benzophenone UV-filters, median concentrations of the analogs (across all sites) ranged from 2.01 to 10.6 ng g-1 d.w., with benzophenone-1 (BzP-1) and benzophenone-3 (BzP-3) presenting the highest concentrations Human exposure was assessed by estimating daily intakes (EDI) of the target analytes through mussel consumption. To our knowledge, this is the first study from the African continent on the occurrence of bisphenols and benzophenone UV-filters in a large population (n=138) of wild brown mussels. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Category: alcohols-buliding-blocks).

4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Sarma, N. et al. published their research in Journal of Environmental Biology in 2021 | CAS: 106-21-8

3,7-Dimethyloctan-1-ol (cas: 106-21-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Quality Control of 3,7-Dimethyloctan-1-ol

Phytochemical composition and biological activities of essential oils extracted from leaves and flower parts of Corymbia citriodora (Hook.) was written by Sarma, N.;Gogoi, R.;Loying, R.;Begum, T.;Munda, S.;Pandey, S. K.;Lal, M.. And the article was included in Journal of Environmental Biology in 2021.Quality Control of 3,7-Dimethyloctan-1-ol The following contents are mentioned in the article:

The present study is focused on phytochem. anal. and different biol. activities of leaf and floral parts essential oil of Corymbia citriodora. GC/MS anal. was conducted using HP-5MS column. DPPH free radical scavenging, reducing power assay were used for evaluating the antioxidant activity, protein denaturation, protease inhibitory assay for anti-inflammatory, Allium cepa assay for cytotoxicity anal. and Vigna radiata germination assay for herbicidal activity. GC/MS anal. revealed α-pinene, citronellal, o-cymene, 10-epi-eudesmol, α-eudesmol as the major compounds in the floral part essential oil while citronellal, citronellyl acetate, trans-caryophyllene, were the major compounds in the leaf essential oil. Essential oils showed the highest antibacterial activity towards Staphylococcus aureus and Bacillus subtilis at 500μg ml-1 and antifungal activity against Aspergillus fumigatus and Saccharomyces cerevisiae at 500μg ml-1 Allium cepa assay revealed that both the essential oils possessed negligible mutagenic effects. The essential oils showed both antioxidant and anti-inflammatory activities. C. citriodora leaf essential oil showed herbicidal effects of the essential oils. The present study showed that both leaf and floral part essential oil of C. citriodora can be utilize in different industrial prospectives. This study involved multiple reactions and reactants, such as 3,7-Dimethyloctan-1-ol (cas: 106-21-8Quality Control of 3,7-Dimethyloctan-1-ol).

3,7-Dimethyloctan-1-ol (cas: 106-21-8) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Quality Control of 3,7-Dimethyloctan-1-ol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts