Jin, Yuan team published research in Angewandte Chemie, International Edition in 2021 | 72824-04-5

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Recommanded Product: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 72824-04-5, formula is C9H17BO2, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Recommanded Product: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Jin, Yuan;Orihara, Kensuke;Kawagishi, Fumiki;Toma, Tatsuya;Fukuyama, Tohru;Yokoshima, Satoshi research published 《 Total Synthesis of Haliclonin A》, the research content is summarized as follows. The total synthesis of haliclonin A was accomplished. Starting from 3,5-dimethoxybenzoic acid, a functionalized cyclohexanone fused to a 17-membered ring was prepared through a Birch reduction/alkylation sequence, ring-closing metathesis, intramol. cyclopropanation, and stereoselective 1,4-addition of an organocopper reagent to an enone moiety. Reductive C-N bond formation via an N,O-acetal forged the 3-azabicyclo[3.3.1]nonane core. The allyl alc. moiety was constructed by a sequence involving stereoselective α-selenylation of an aldehyde via an enamine, syn-elimination of a selenoxide, and allylation of the aldehyde with an allylboronate. Formation of the 15-membered ring containing a skipped diene was achieved by ring-closing metathesis, and final transformations led to the synthesis of haliclonin A.

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Recommanded Product: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Jin, Hao team published research in Synlett in 2019 | 16545-68-9

Computed Properties of 16545-68-9, Cyclopropanol is a cyclopropane in which a hydrogen atom is replaced by a hydroxy group. It is a member of cyclopropanes and an aliphatic alcohol.
Cyclopropanol is a useful research compound. Its molecular formula is C3H6O and its molecular weight is 58.08 g/mol. The purity is usually 95%.
Cyclopropanol is a cyclic organic compound that is synthesized from sodium hydroxide solution, nitrogen atoms, and carbonyl groups. Cyclopropanol has shown inhibitory effects on inflammatory bowel disease in rats. This drug also inhibits the production of hydrogen chloride and hydrochloric acid in the stomach, which can lead to ulcers. Cyclopropanol has been found to be effective against bowel diseases such as Crohn’s disease and ulcerative colitis. This drug has been shown to have strong antioxidant properties, which may be due to its ability to reduce hydroxyl radicals., 16545-68-9.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 16545-68-9, formula is C3H6O, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Computed Properties of 16545-68-9

Jin, Hao;Gao, Zhuo;Zhou, Shaodong;Qian, Chao research published 《 One-Pot Approach for SNAr Reaction of Fluoroaromatic Compounds with Cyclopropanol》, the research content is summarized as follows. A novel method for preparation of aryl cyclopropyl ethers I [Ar = 1-ClC6H4, 2-O2NC6H4, 4-chloro-2-pyridyl, etc.] via nucleophilic aromatic substitution reaction (SNAr) of fluoroarom. compounds with cyclopropanol under relatively mild conditions was developed. The reaction was performed at 75 °C with Cs2CO3 as the base and DMF as solvent, after 6 h the yield was up to 90%. Finally, various fluoroarom. compounds were employed as substrates for a test that proved a wide application scope of the method.

Computed Properties of 16545-68-9, Cyclopropanol is a cyclopropane in which a hydrogen atom is replaced by a hydroxy group. It is a member of cyclopropanes and an aliphatic alcohol.
Cyclopropanol is a useful research compound. Its molecular formula is C3H6O and its molecular weight is 58.08 g/mol. The purity is usually 95%.
Cyclopropanol is a cyclic organic compound that is synthesized from sodium hydroxide solution, nitrogen atoms, and carbonyl groups. Cyclopropanol has shown inhibitory effects on inflammatory bowel disease in rats. This drug also inhibits the production of hydrogen chloride and hydrochloric acid in the stomach, which can lead to ulcers. Cyclopropanol has been found to be effective against bowel diseases such as Crohn’s disease and ulcerative colitis. This drug has been shown to have strong antioxidant properties, which may be due to its ability to reduce hydroxyl radicals., 16545-68-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Jin, Hangbiao team published research in Science of the Total Environment in 2020 | 647-42-7

Name: 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., 647-42-7.

Name: 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 647-42-7, name is 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.

Jin, Hangbiao;Mao, Lingling;Xie, Jiahui;Zhao, Meirong;Bai, Xiaoxia;Wen, Jie;Shen, Tao;Wu, Pengfei research published 《 Poly- and perfluoroalkyl substance concentrations in human breast milk and their associations with postnatal infant growth》, the research content is summarized as follows. Perfluoroalkyl carboxylates (PFCAs) and perfluoroalkyl sulfonates are widespread in human breast milk. However, the occurrence of chlorinated polyfluorinated ether sulfonates (Cl-PFESAs) and fluorotelomer alcs. (FTOHs) in breast milk and their effects on postnatal growth of infants through breast milk consumption are still not well known. This study characterized the occurrence of 16 poly- and perfluoroalkyl substances (PFASs) in breast milk from 174 women in Hangzhou, China and investigated the association between lactation exposure to these PFASs through breast milk consumption and the postnatal growth of infants. Our results showed that perfluorooctanoate (mean 87 pg/mL) was the predominant PFAS in breast milk, followed by perfluorohexanoate (41 pg/mL), 6:2 Cl-PFESA (28 pg/mL), and perfluorooctane sulfonate (25 pg/mL). The occurrence and levels of Cl-PFESAs in Chinese breast milk were firstly reported in the current study. The 8:2 and 10:2 FTOH were detected in half of breast milk samples, with the mean concentration of 9.0 pg/mL and 10 pg/mL, resp. Breast milk concentrations of C8-C10 PFCAs and 6:2 Cl-PFESA were neg. correlated with infant’s length gain rate. Exposed to higher levels of 8:2 FTOH were correlated with decreased infant’s weight gain rate. Daily intakes of PFASs via the consumption of breast milk were calculated for infants. Overall, this study firstly demonstrated that lactation exposure to C8-C10 PFCAs, 8:2 FTOH, and 6:2 Cl-PFESA through breast milk consumption may affect the postnatal growth of infants.

Name: 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., 647-42-7.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Jiang, Pei team published research in International Journal of Environmental Analytical Chemistry in | 533-73-3

Synthetic Route of 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 533-73-3, formula is C6H6O3, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Synthetic Route of 533-73-3

Jiang, Pei;Wei, Xueyu;Chen, Hanfei;Liu, Zhigang research published 《 A novel magnetically separable BiVO4/N-rGO/CuFe2O4 hybrid photocatalyst for efficient detoxification of p-bromophenol》, the research content is summarized as follows. The present work deals with simple hydrothermal preparation of magnetically separable BiVO4/N-rGO/CuFe2O4 Z-scheme hybrid photocatalyst for efficient detoxification of p-bromophenol (p-BP). BiVO4is one of the most efficient visible light catalyst, however, suffers with photo-corrosion and high recombination of charge carriers that restricts its applications. Addition of graphene oxide doped with nitrogen are believed to overcome these issues. Further addition of CuFe2O4 enhances the catalytic degradation and helps in separating the catalyst. With these merits BiVO4/N-rGO/CuFe2O4 could be a promising photocatalyst for detoxification of p-BP. After 60 min of irradiation 94.1 ± 1.2% degradation was achieved by the BiVO4/N-rGO/CuFe2O4 (k = 0.01749 min-1) while only 53.8 ±2.3% was observed in BiVO4 (k = 0.00674 min-1). The catalyst could be able to recover using external magnet and showed 86.4% of degradation efficiency even after five recycles, which suggested its good stability. The degradation products identification and pathway were proposed based on LC-ESI/MS anal. Moreover, phytotoxicity assessment of the degradation products was investigated on Phaseolus vulgaris in which the germination index (GI) was about 11.4% for pure p-BP, while it was about 83.03% for degradation products. Thus, the results suggested that more efficient p-BP detoxification was achieved during this photodegradation

Synthetic Route of 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Jiang, Binyang team published research in Chinese Journal of Chemistry in 2022 | 72824-04-5

Reference of 72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 72824-04-5, formula is C9H17BO2, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Reference of 72824-04-5

Jiang, Binyang;Shi, Shi-Liang research published 《 Pd-Catalyzed Cross-Coupling of Alkylzirconocenes and Aryl Chlorides》, the research content is summarized as follows. The first Pd-catalyzed aryl-alkyl cross-coupling of alkylzirconocenes and aryl halides was reported. A com. available N-heterocyclic carbene (IPr) as the ligand for palladium catalyst was critical to enable the challenging process. This mild protocol does not require base additives and tolerated a broad scope of both coupling partners bearing various functional groups and heterocycles. Moreover, both terminal and internal alkenes were applicable, and the latter underwent “chain walking”, giving the terminal coupling product exclusively. Preliminary mechanistic studies revealed a precatalyst activation pathway and inhibited β-H elimination due to steric bulk of NHC ligand.

Reference of 72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Ji, Youngran team published research in ARKIVOC (Gainesville, FL, United States) in 2018 | 141699-55-0

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., SDS of cas: 141699-55-0

In general, the hydroxyl group makes alcohols polar. 141699-55-0, formula is C8H15NO3, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. SDS of cas: 141699-55-0

Ji, Youngran;Wojtas, Lukasz;Lopchuk, Justin M. research published 《 An improved, gram-scale synthesis of protected 3-haloazetidines: rapid diversified synthesis of azetidine-3-carboxylic acids》, the research content is summarized as follows. Protected 3-haloazetidines (bromide, iodide), widely used and versatile building blocks in medicinal chem., have been prepared in a one-pot, gram-scale strain-release reaction of 1-azabicyclo[1.1.0]butane from com. available starting materials. These intermediates were subsequently used to prepare a series of high value azetidine-3-carboxylic acid derivatives including the first reported synthesis of 1-(tert-butoxy-carbonyl)-3-((trifluoromethyl)thio)azetidine-3-carboxylic acid.

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., SDS of cas: 141699-55-0

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Jeyakumar, D. team published research in Bioresource Technology in 2013 | 16545-68-9

16545-68-9, Cyclopropanol is a cyclopropane in which a hydrogen atom is replaced by a hydroxy group. It is a member of cyclopropanes and an aliphatic alcohol.
Cyclopropanol is a useful research compound. Its molecular formula is C3H6O and its molecular weight is 58.08 g/mol. The purity is usually 95%.
Cyclopropanol is a cyclic organic compound that is synthesized from sodium hydroxide solution, nitrogen atoms, and carbonyl groups. Cyclopropanol has shown inhibitory effects on inflammatory bowel disease in rats. This drug also inhibits the production of hydrogen chloride and hydrochloric acid in the stomach, which can lead to ulcers. Cyclopropanol has been found to be effective against bowel diseases such as Crohn’s disease and ulcerative colitis. This drug has been shown to have strong antioxidant properties, which may be due to its ability to reduce hydroxyl radicals., SDS of cas: 16545-68-9

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 16545-68-9, formula is C3H6O, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , SDS of cas: 16545-68-9

Jeyakumar, D.;Chirsteen, J.;Doble, Mukesh research published 《 Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes》, the research content is summarized as follows. Environmental issues raise concern on restrict the use of nondegradable polymers and encourage the development of degradable once. This study is carried out was to understand the rate of biodegradation of untreated and pretreated (100 °C or UV for 10 days) polypropylene (PP), pro-oxidant blended (MI-PP) and starch blended polypropylenes (ST-PP) with two different fungal strains, Phanerochaete chrysosporium NCIM 1170 (F1) and Engyodontium album MTP091 (F2). About 18.8% and 9.42% gravimetric weight loss and 79% and 57% TGA weight loss (at 400 °C) were observed with UV pretreated MI-PP in 1 yr with F2 and F1 strains resp. The amount of lacasse produced by the organism and biomass attached on the polymer surface are correlated with TGA weight loss (0.6-0.93). The formation of extractable oxygenated compounds and unoxidized low-mol. weight hydrocarbons are high in pretreated and blended samples. These results indicate blending and pretreatment strategy leads to an optimal waste-disposal strategy.

16545-68-9, Cyclopropanol is a cyclopropane in which a hydrogen atom is replaced by a hydroxy group. It is a member of cyclopropanes and an aliphatic alcohol.
Cyclopropanol is a useful research compound. Its molecular formula is C3H6O and its molecular weight is 58.08 g/mol. The purity is usually 95%.
Cyclopropanol is a cyclic organic compound that is synthesized from sodium hydroxide solution, nitrogen atoms, and carbonyl groups. Cyclopropanol has shown inhibitory effects on inflammatory bowel disease in rats. This drug also inhibits the production of hydrogen chloride and hydrochloric acid in the stomach, which can lead to ulcers. Cyclopropanol has been found to be effective against bowel diseases such as Crohn’s disease and ulcerative colitis. This drug has been shown to have strong antioxidant properties, which may be due to its ability to reduce hydroxyl radicals., SDS of cas: 16545-68-9

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Jeong, SunHwa team published research in Food and Chemical Toxicology in 2022 | 527-07-1

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Formula: C6H11NaO7

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 527-07-1, formula is C6H11NaO7, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Formula: C6H11NaO7

Jeong, SunHwa;Park, Seon-Mi;Jo, Na Rea;Kwon, Jin-Sook;Lee, Jimin;Kim, KangMin;Go, Seon Myeong;Cai, Lian;Ahn, Dohee;Lee, Sung Duck;Hyun, Sang-Hwan;Choi, Kyung-Chul;Jeung, Eui-Bae research published 《 Pre-validation of an alternative test method for prediction of developmental neurotoxicity》, the research content is summarized as follows. Exposure to neurodevelopmental toxicants can cause permanent brain injury. Hance, determining the neurotoxicity of unknown substances is essential for the safety of substance. As an alternative method to animal studies, developmental neurotoxicity test (DNT) and the first discriminant function (DF) were established in previous study. This study aimed to increase the predictability of the DNT method and perform a mobility test. Two endpoints of 29 newly investigated substances were used to establish a second-generation DF (2nd GDF). As two endpoints, the half-inhibitory concentration of the cell viability (IC50) was determined using a cell counting kit-8 assay. The half-inhibitory concentration of differentiation (ID50) was determined by measuring the green fluorescent protein (GFP) intensity in 46C cells. The substances were treated dose-dependently to measure IC50 and ID50. The 2nd GDF classified 29 chems. accurately as toxic and non-toxic. Four participants of three independent laboratories were enrolled to test the mobility. The results of the test set were highly accurate in reproducibility (100% of accuracy, sensitivity, and specificity) and mobility (accuracy 93.33%, sensitivity 90.91%, and specificity 100%). In conclusion, the protocol is transferable, reproducible, and accurate. Therefore, this could be a standardizing method for determining a neurotoxicant as an alternative for animal experiments

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, Formula: C6H11NaO7

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Januszewski, Rafal team published research in Materials & Design in 2021 | 72824-04-5

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Electric Literature of 72824-04-5

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 72824-04-5, formula is C9H17BO2, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Electric Literature of 72824-04-5

Januszewski, Rafal;Dutkiewicz, Michal;Kownacki, Ireneusz research published 《 An efficient methodology for the synthesis of unique functional polyolefins》, the research content is summarized as follows. An efficient methodol. for the synthesis of a library of new organofunctional polyolefins is proposed. It includes synthesis of a new polymeric precursor and its subsequent functionalization. Optimization of the synthesis conditions led to the complete conversion of the reagents and selective formation of polymers decorated with desired functional groups, whose structures have been confirmed by NMR, FT-IR and GPC analyses. The developed synthetic strategy enables incorporation of a wide variety of organic and organometallic groups into the polymer chains, which cannot be or are tech. difficult to be carried out with conventional polymerization protocols.

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Electric Literature of 72824-04-5

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Januszewski, Rafal team published research in Journal of Catalysis in 2020 | 72824-04-5

Category: alcohols-buliding-blocks, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 72824-04-5, formula is C9H17BO2, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Category: alcohols-buliding-blocks

Januszewski, Rafal;Grzelak, Magdalena;Orwat, Bartosz;Dutkiewicz, Michal;Kownacki, Ireneusz research published 《 Simple catalytic approach to highly regioselective synthesis of monofunctionalized disiloxanes decorated with metalloids》, the research content is summarized as follows. Selective mono-functionalization of 1,1,3,3-tetramethyldisiloxane (TMDSO) with vinyl and allyl metalloids via hydrosilylation reaction is reported. The activities of a number of transition metal catalysts in the reactions between TMDSO and selected unsaturated metalloids were determined, which permitted selection of the most efficient catalysts whose use led to selective formation of monofunctionalized disiloxanes with the regioselectivity control. All products were isolated and fully characterized by NMR spectroscopy and MS technique.

Category: alcohols-buliding-blocks, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts