Khodja, Maroua team published research in Journal of Colloid and Interface Science in 2020 | 647-42-7

Recommanded Product: 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., 647-42-7.

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 647-42-7, formula is C8H5F13O, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Recommanded Product: 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol

Khodja, Maroua;El Kateb, Mejda;Beji, Mohammed;Guittard, Frederic;Darmanin, Thierry research published 《 Tuning nanotubular structures by templateless electropolymerization with thieno[3,4-b]thiophene-based monomers with different substituents and water content》, the research content is summarized as follows. Here, templateless electropolymerization is employed to produce nanotubular structures from various thieno[3,4-b]thiophene-based monomers that differ in substituent structure and size, as well as the linker connecting the thieno[3,4-b]thiophene core and substituent. The formation of densely packed vertically aligned are obtained from monomers with a pyrene substituent and when a significant amount of water (CH2Cl2 + H2O) is included in the solvent. The geometrical parameters of the nanotubes are highly dependent on the electopolymn. method. A significant amount of air is trapped within the structure of the densely packed open nanotubes obtained with Qs = 100 mC cm-2 causing an increase in water contact angle (θw) up to 82.6° (intermediate state between the Wenzel and the Cassie-Baxter state), and θw can become even more hydrophobic by further modifying the deposition method or the electrolyte.

Recommanded Product: 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., 647-42-7.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Ke, Zhuang team published research in Environmental Research in 2021 | 533-73-3

533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., Application of C6H6O3

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 533-73-3, formula is C6H6O3, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Application of C6H6O3

Ke, Zhuang;Lan, Minjian;Yang, Tunan;Jia, Weibin;Gou, Zhenjiu;Chen, Kai;Jiang, Jiandong research published 《 A two-component monooxygenase for continuous denitration and dechlorination of chlorinated 4-nitrophenol in Ensifer sp. strain 22-1》, the research content is summarized as follows. The environmental fates of chlorinated 4-nitrophenols, 2,6-dichloro-4-nitrophenol (2,6-DCNP) and 2-chloro-4-nitrophenol (2C4NP), mediated via microbial catabolism have attracted great attention due to their high toxicity and persistence in the environment. In this study, a strain of Ensifer sp. 22-1 that was capable of degrading both 2,6-DCNP and 2C4NP was isolated from a halogenated aromatic-contaminated soil sample. A gene cluster cnpBADCERM was predicted to be involved in the catabolism of 2,6-DCNP and 2C4NP based on genome sequence anal. A two-component monooxygenase CnpAB, composed of an oxygenase component (CnpA) and a reductase component (CnpB), was confirmed to catalyze the continuous denitration and dechlorination of 2,6-DCNP and 2C4NP to 6-chlorohydroxyquinol (6-CHQ) and hydroxyquinol (HQ), resp. Knockout of cnpA resulted in the complete loss of the capacity for strain 22-1 to degrade 2,6-DCNP and 2C4NP. Homologous modeling and docking showed that Val155∼Ala159, Phe206∼Pro209 and Phe446∼Arg461 of CnpA participated in the formation of the FAD-binding pocket, and Arg101, Val155 and Asn447 formed hydrogen bonds with 2,6-DCNP/2C4NP in the substrate-binding pocket. This work characterized a new two-component monooxygenase for 2,6-DCNP and 2C4NP, and enriched our understanding of the degradation mechanism of chlorinated nitrophenols (CNPs) by microorganisms.

533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., Application of C6H6O3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Kauroo, Shahin team published research in Scientific Reports in 2021 | 24034-73-9

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, COA of Formula: C20H34O

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 24034-73-9, formula is C20H34O, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. COA of Formula: C20H34O

Kauroo, Shahin;Govinden-Soulange, Joyce;Ranghoo-Sanmukhiya, V. Mala;Miranda, Kathryn;Cotham, William E.;Walla, Michael D.;Nagarkatti, Mitzi;Nagarkatti, Prakash research published 《 Extracts of select endemic plants from the Republic of Mauritius exhibiting anti-cancer and immunomodulatory properties》, the research content is summarized as follows. Mauritius Island possesses unique plant biodiversity with a potential reservoir of biol. active compounds of pharmacol. interest. In the current study, we investigated Mauritius endemic plant families Asteraceae, Ebenaceae, Sapotaceae, and Erythroxylaceae, for anti-cancer properties on T cell lymphoma and B16F10 Melanoma cells and immunomodulatory properties on primary T and B cells. The cytotoxicity of methanolic plant extracts at 1, 10, 25 μg/mL was determined The most active plant species were evaluated for their apoptosis-inducing effects. The immunomodulatory properties of the plants were also studied, and preliminary phytochem. screening of selected plants was done by LC-MS anal. Psiadia lithospermifolia (Lam.) Cordem (Asteraceae) at 25 μg/mL was the most cytotoxic on both EL4 and B16 cells and triggered apoptosis by the death receptor pathway, and at least in part, by the mitochondrial pathway. Most plant species from Asteraceae, Ebenaceae, Erythroxylaceae, and Sapotaceae inhibited the proliferation of activated T and B cells, although some promoted T cell proliferation. LC-MS profile of Asteraceae plants showed the presence of terpenes, terpenoids, fatty acids, and phenolic. Flavonoids and phenolic acid were also detected from Ebenaceae and Sapotaceae plants. Together, our study demonstrated that Mauritius endemic flora exhibit potential anti-cancer and anti-inflammatory properties worthy of further in-depth studies.

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, COA of Formula: C20H34O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Kato, Hiroyuki team published research in Applied Microbiology and Biotechnology in 2022 | 533-73-3

Product Details of C6H6O3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 533-73-3, formula is C6H6O3, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Product Details of C6H6O3

Kato, Hiroyuki;Furusawa, Terumi T.;Mori, Reini;Suzuki, Hiromitsu;Kato, Masashi;Shimizu, Motoyuki research published 《 Characterization of two 1,2,4-trihydroxybenzene 1,2-dioxygenases from Phanerochaete chrysosporium》, the research content is summarized as follows. Abstract: Lignin is the most abundant aromatic compound in nature, and it plays an important role in the carbon cycle. White-rot fungi are microbes that are capable of efficiently degrading lignin. Enzymes from these fungi possess exceptional oxidative potential and have gained increasing importance for improving bioprocesses, such as the degradation of organic pollutants. The aim of this study was to identify the enzymes involved in the ring cleavage of the lignin-derived aromatic 1,2,4-trihydroxybenzene (THB) in Phanerochaete chrysosporium, a lignin-degrading basidiomycete. Two intradiol dioxygenases (IDDs), PcIDD1 and PcIDD2, were identified and produced as recombinant proteins in Escherichia coli. In the presence of O2, PcIDD1 and PcIDD2 acted on eight and two THB derivatives, resp., as substrates. PcIDD1 and PcIDD2 catalyze the ring cleavage of lignin-derived fragments, such as 6-methoxy-1,2,4-trihydroxybenzene (6-MeOTHB) and 3-methoxy-1,2-catechol. The current study also revealed that syringic acid (SA) was converted to 5-hydroxyvanillic acid, 2,6-dimethoxyhydroquinone, and 6-MeOTHB by fungal cells, suggesting that PcIDD1 and PcIDD2 may be involved in aromatic ring fission of 6-MeOTHB for SA degradation This is the first study to show 6-MeOTHB dioxygenase activity of an IDD superfamily member. These findings highlight the unique and broad substrate spectra of PcIDDs, rendering it an attractive candidate for biotechnol. application. Key points: • Novel intradiol dioxygenases (IDD) in lignin degradation were characterized. • PcIDDs acted on lignin-derived fragments and catechol derivatives • Dioxygenase activity on 6-MeOTHB was identified in IDD superfamily enzymes.

Product Details of C6H6O3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Kassotis, Christopher D. team published research in Science of the Total Environment in 2021 | 647-42-7

647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., Formula: C8H5F13O

Formula: C8H5F13O, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 647-42-7, name is 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.

Kassotis, Christopher D.;Hoffman, Kate;Phillips, Allison L.;Zhang, Sharon;Cooper, Ellen M.;Webster, Thomas F.;Stapleton, Heather M. research published 《 Characterization of adipogenic, PPARγ, and TRβ activities in house dust extracts and their associations with organic contaminants》, the research content is summarized as follows. In this study, we sought to expand our previous research on associations between bioactivities in dust and associated organic contaminants. Dust samples were collected from central NC homes (n = 188), solvent extracted, and split into two fractions, one for anal. using three different bioassays (nuclear receptor activation/inhibition and adipocyte development) and one for mass spectrometry (targeted measurement of 124 organic contaminants, including flame retardants, polychlorinated biphenyls, perfluoroalkyl substances, pesticides, phthalates, and polycyclic aromatic hydrocarbons). Approx. 80% of dust extracts exhibited significant adipogenic activity at concentrations that are comparable to estimated exposure for children and adults (e.g. ∼20μg/well dust) via either triglyceride accumulation (65%) and/or pre-adipocyte proliferation (50%). Approx. 76% of samples antagonized thyroid receptor beta (TRβ), and 21% activated peroxisome proliferator activated receptor gamma (PPARγ). Triglyceride accumulation was significantly correlated with TRβ antagonism. Sixty-five contaminants were detected in at least 75% of samples; of these, 26 were correlated with adipogenic activity and ten with TRβ antagonism. Regression models were used to evaluate associations of individual contaminants with adipogenic and TRβ bioactivities, and many individual contaminants were significantly associated An exploratory g-computation model was used to evaluate the effect of mixtures Contaminant mixtures were pos. associated with triglyceride accumulation, and the magnitude of effect was larger than for any individually measured chem. For each quartile increase in mixture exposure, triglyceride accumulation increased by 212% (RR = 3.12 and 95% confidence interval: 1.58, 6.17). These results suggest that complex mixtures of chems. present in house dust may induce adipogenic activity in vitro at environmental concentrations and warrants further research.

647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., Formula: C8H5F13O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Karlsson, Staffan team published research in Organic Process Research & Development in 2015 | 141699-55-0

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Computed Properties of 141699-55-0

Computed Properties of 141699-55-0, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 141699-55-0, name is tert-Butyl 3-hydroxyazetidine-1-carboxylate, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.

Karlsson, Staffan;Bergman, Rolf;Loefberg, Christian;Moore, Peter R.;Ponten, Fritiof;Tholander, Joakim;Soerensen, Henrik research published 《 Development of a Large-Scale Route to an MCH1 Receptor Antagonist: Investigation of a Staudinger Ketene-Imine Cycloaddition in Batch and Flow Mode》, the research content is summarized as follows. A practical large-scale route to an MCH1 receptor antagonist, azetidinyl oxadiazole I, is described. A Staudinger β-lactam synthesis of an imine and an in situ generated ketene was utilized as a key step for the preparation of a spiro-azetidine building block. The reaction was demonstrated in both batch and flow mode and a comparison of these techniques is described.

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Computed Properties of 141699-55-0

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Karim, Rejaul Md team published research in Journal of Physical Chemistry C in 2021 | 527-07-1

Application In Synthesis of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

In general, the hydroxyl group makes alcohols polar. 527-07-1, formula is C6H11NaO7, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Application In Synthesis of 527-07-1

Karim, Rejaul Md;Adhikari, Arundhati;Panda, Surya Narayan;Sharangi, Purbasha;Kayal, Soubhik;Manna, Gouranga;Kumar, P. S. Anil;Bedanta, Subhankar;Barman, Anjan;Sarkar, Indranil research published 《 Ultrafast Spin Dynamics of Electrochemically Grown Heusler Alloy Films》, the research content is summarized as follows. The electrochem. growth of Heusler alloy film with good morphol. quality and crystalline order using single-crystalline substrate is demonstrated. Static magneto optical Kerr effect studies are employed to reveal the surface magnetization reversal of the films. An understanding of the intrinsic nature of the magnetization dynamics in this class of electrochem. grown materials is presented using time-resolved magneto optical Kerr effect measurements, under femtosecond laser excitation. Excitation laser fluence dependence study reveals the ultrafast demagnetization time, fast remagnetization time, and magnetic damping parameter as well as their correlation.

Application In Synthesis of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Kanoh, Shigeyoshi team published research in Tetrahedron in 2002 | 7748-36-9

7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., Synthetic Route of 7748-36-9

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 7748-36-9, formula is C3H6O2, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Synthetic Route of 7748-36-9

Kanoh, Shigeyoshi;Naka, Masashi;Nishimura, Tomonari;Motoi, Masatoshi research published 《 Isomerization of cyclic ethers having a carbonyl functional group: new entries into different heterocyclic compounds》, the research content is summarized as follows. Oxiranes (epoxides) and oxetanes having a carbonyl functional group are chemoselectively isomerized to different heterocyclic compounds via Lewis acid-promoted 1,6- and 1,7-intramol. nucleophilic attacks of the carbonyl oxygen on the electron-deficient carbon neighboring the oxonium oxygen: for example, cyclic imides to bicyclic acetals, esters to bicyclic ortho esters, sec-amides to 4,5-dihydrooxazole or 5,6-dihydro-4H-1,3-oxazines, and tert-amides to bicyclic acetals or azetidines. The intramol. attack of a 1,5-positioned carbonyl oxygen predominantly results in a propagating-end isomerization polymerization On the other hand, cyclic ethers having a 1,8- or farther positioned carbonyl group undergo conventional ring-opening polymerization A THF (oxolane) ring does not open, even with a 1,6-positioned carbonyl group.

7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., Synthetic Route of 7748-36-9

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Kanno, Tetsuya team published research in Hyomen Gijutsu in 2022 | 527-07-1

SDS of cas: 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 527-07-1, formula is C6H11NaO7, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , SDS of cas: 527-07-1

Kanno, Tetsuya;Umeda, Yasushi;Honma, Hideo;Takai, Osamu;Tashiro, Katsuhiko research published 《 Effects of electroless NiSnP plating bath composition with high Sn containing deposited film》, the research content is summarized as follows. Many studies have investigated Ni-Sn alloy because it has good luster and excellent corrosion resistance. Electroplating methods have already reached a practical level of applicability, but electroless plating methods have not reached such a degree of utility because they present difficulties such as insufficient film thickness and low Sn content in the deposited film. Therefore, we fixed the bath temperature and stirring under the operating conditions and studied details of the plating bath composition to deposit a film with a high Sn content of 50 wt% or more using electroless plating. Results confirmed that the Sn contents in the deposited films differed depending on the complexing agent concentration, metal ratio, bath pH, and especially the metal source. Citric acid and sodium gluconate were suitable as complexing agents for each metal source. In the plating bath using Ni (OH)2 as the Ni metal source, high contents of Sn were co-deposited stably. Moreover, Sn4+ was more suitable than Sn2+ as the Sn metal source. Because Sn4+ formed stable complex ions, the plating bath was stabilized. A film with high Sn content was deposited. Therefore, films with 50 wt% or more Sn contents were obtained even when using electroless plating.

SDS of cas: 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Kanazawa, Tomoaki team published research in ACS Macro Letters in 2022 | 72824-04-5

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Formula: C9H17BO2

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 72824-04-5, formula is C9H17BO2, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Formula: C9H17BO2

Kanazawa, Tomoaki;Nishikawa, Tsuyoshi;Ouchi, Makoto research published 《 Orthogonal C-B Bond Transformation as an Approach for Versatile Synthesis of End-Functionalized Polymers》, the research content is summarized as follows. Conventionally inaccessible end-functionalized vinyl polymers were synthesized via orthogonal side-chain replacement for terminal and repeating units of poly(alkenyl boronate)s. A terminal-defined polymer of isopropenyl boronic acid pinacol ester (IPBpin) was synthesized via RAFT polymerization, and subsequent cobalt (Co)-catalyzed end olefination afforded the polymer carrying the C(sp2)-B bond at the terminal and the C(sp3)-B bond in repeating units. Herein, the terminal C(sp2)-B bond was selectively transformable via palladium (Pd)-catalyzed Suzuki-Miyaura cross coupling, and subsequent transformation of the repeating C(sp3)-B unit gave the poly(α-Me vinyl alc.) [poly(MVA)] bearing various functional groups at the terminal. The boron-based stepwise polymer reaction thus overcame the synthetic difficulty of the end-functionalized poly(MVA), which is ascribed to the poor polymerization ability of the corresponding acetate monomer, i.e., isopropenyl acetate.

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Formula: C9H17BO2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts