Li, Qingjiang team published research in Organic & Biomolecular Chemistry in 2021 | 72824-04-5

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Electric Literature of 72824-04-5

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 72824-04-5, formula is C9H17BO2, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Electric Literature of 72824-04-5

Li, Qingjiang;Guo, Jiatong;Guo, Zhongwu research published 《 Direct access to various C3-substituted sialyl glycal derivatives from 3-iodo-sialyl glycals》, the research content is summarized as follows. A new and efficient method was developed for the synthesis of C3-substituted sialyl glycals that are useful for novel sialidase inhibitor discovery. This method was based on the cross-coupling reactions of 3-iodo-sialyl glycal Me ester with boronic acids, alkenes and alkynes to directly introduce various functional groups to the sialyl glycal C3-position. A series of C3-aryl, alkyl, alkenyl, and alkynyl derivatives of sialyl glycal were efficiently and conveniently synthesized for the first time by this method, which has demonstrated its wide application scope.

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Electric Literature of 72824-04-5

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Peijun team published research in ACS Catalysis in 2021 | 7748-36-9

7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., Category: alcohols-buliding-blocks

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 7748-36-9, formula is C3H6O2, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Category: alcohols-buliding-blocks

Li, Peijun;Zbieg, Jason R.;Terrett, Jack A. research published 《 A Platform for Decarboxylative Couplings via Photoredox Catalysis: Direct Access to Carbocations from Carboxylic Acids for Carbon-Oxygen Bond Formation》, the research content is summarized as follows. Within the past decade, photoredox catalysis has enabled numerous decarboxylative transformations to couple carboxylic acids with a variety of partners primarily through carbon-centered radical intermediates. Herein, we describe a method for the construction of carbon-oxygen bonds using a dual photoredox/iodine(III) platform directly from simple carboxylic acids and alcs. This activation platform enables the direct utilization of readily available acids and alcs. without the need for prefunctionalization and works broadly across primary, secondary, and tertiary carboxylic acid substrates. We propose that this transformation proceeds via a radical-polar crossover event to generate a discrete carbocation intermediate which is intercepted by a nucleophilic coupling partner, thereby overcoming the electronically mismatched nature inherent in previous radical-based decarboxylative couplings. The application of this mechanistic approach toward addnl. nucleophiles is also demonstrated using water, enabling a direct decarboxylative-hydroxylation reaction. Finally, we demonstrated that the decarboxylative etherification can be applied to a peptide substrate, selectively functionalizing serine over other nucleophilic residues, providing support for future potential bioconjugation applications.

7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Min team published research in Organic Letters in 2021 | 72824-04-5

Safety of 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

In general, the hydroxyl group makes alcohols polar. 72824-04-5, formula is C9H17BO2, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Safety of 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Li, Min;Wang, Yanhui;Tsui, Gavin Chit research published 《 Palladium-Catalyzed Stereoselective C-F Bond Vinylation and Allylation of Tetrasubstituted gem-Difluoroalkenes via Stille Coupling: Synthesis of Monofluorinated 1,3- and 1,4-Dienes》, the research content is summarized as follows. Herein authors describe a Pd-catalyzed stereoselective C-F bond vinylation and allylation reaction of tetrasubstituted gem-difluoroalkenes for the synthesis of valuable monofluorinated 1,3- and 1,4-dienes with excellent diastereoselectivities. Different from previously used Pd(PPh3)4, a catalytic system involving Pd(0) and dppe as the ligand was developed for Stille-type cross-coupling between gem-difluoroalkenes and vinyl- and allyltin reagents.

Safety of 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Mengwen team published research in Analytical Methods in 2020 | 72824-04-5

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Safety of 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 72824-04-5, formula is C9H17BO2, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Safety of 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Li, Mengwen;Ao, Shen;Liang, Yueqi;Hao, Zhen;Hao, Xiaohui;Liu, Xueliang;Sun, Xinchao;Yang, Yunxu research published 《 The selective and sensitive detection of formaldehyde by ZIF-90-LWvia aza-Cope rearrangement》, the research content is summarized as follows. Formaldehyde (FA), as one of the simplest reactive carbonyl species (RCS), is widely known as an environmental toxin and carcinogen. In this work, a new ZIF-90 type material (ZIF-90-LW) was synthesized and investigated, which combines the two strategies of “2-aza-Cope rearrangement” and “MOF structure”, by the combination of a pre-functionalized 2-allylaminoimidazole ligand and Zn2+ salt under solvothermal conditions. From this, the hurdle of selectivity over other carbonyl compounds (RCS) could be overcome despite their similar electrophilic reactivities to FA, and a prominent fluorescence turn-on type signal was realized through the 2-aza-Cope rearrangement mechanism. A good linear relationship (R2 = 0.9979) was obtained by fitting the fluorescence intensity towards FA from 0 to 25 mM, and the detection limit of ZIF-90-LW for FA was 2.3 μM. In addition, it also showed potentially useful sensing ability for the detection of FA in the gas phase, and might therefore be used to rapidly detect FA with a response time of 28 s in the liquid phase. All of the above features clearly demonstrate that ZIF-90-LW has great potential for sensitive and selective recognition of FA in the environment.

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Safety of 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Lianggui team published research in Angewandte Chemie, International Edition in 2022 | 72824-04-5

Computed Properties of 72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 72824-04-5, formula is C9H17BO2, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Computed Properties of 72824-04-5

Li, Lianggui;Shan, Chunhui;Shi, Jiarong;Li, Wensheng;Lan, Yu;Li, Yang research published 《 The Stannum-Ene Reactions of Benzyne and Cyclohexyne with Superb Chemoselectivity for Cyclohexyne》, the research content is summarized as follows. The stannum-ene reactions of both benzyne and cyclohexyne were realized, which is particularly suitable for cyclohexyne with a broad substrate scope and excellent chemoselectivity. Our DFT calculations via distortion/interaction anal. revealed that both stannum- and hydrogen-ene reactions with cyclohexyne have later transition states due to their higher distortion energies in the transition states than those in benzyne reactions, which lead to enhanced Pauli repulsion as the decisive factor in the interaction energy accompanied with enlarged energy gap between two types of ene reactions. Therefore, excellent chemoselectivity was disclosed in the cyclohexyne-ene reaction.

Computed Properties of 72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Kuiliang team published research in Chemical Communications (Cambridge, United Kingdom) in 2022 | 72824-04-5

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Name: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 72824-04-5, formula is C9H17BO2, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Name: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Li, Kuiliang;Sun, Xiang;Zhao, Shuangshuang;Li, Tong;Zha, Zhenggen;Wang, Zhiyong research published 《 Zn-Catalyzed enantioselective allylation and allenylation of isatins by virtue of a proline-derived chiral ligand》, the research content is summarized as follows. An asym. allylation and allenylation of isatins with facile organoboron reagents was developed under the catalysis of a Lewis acid. A series of optically pure 3-allyl-3-hydroxyoxindoles I [R1 = H, Me, Ph, etc.; R2 = H, 5-Me, 4-Br, etc.; R3 = CH2CH=CH2, CH(Me)CH=CH2, CH2C(Me)=CH2] and 3-allenyl-3-hydroxyoxindoles I [R3 = CH=C=CH2] could be obtained in excellent yields (up to 99% yield) and high enantioselectivities (up to 97% ee). The possible transition state was supported by DFT calculation and the corresponding mechanism was proposed. A gram scale experiment and further functionalization of these chiral 3-hydroxyoxindoles were established.

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Name: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Jun team published research in Dalton Transactions in 2022 | 72824-04-5

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Name: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Name: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 72824-04-5, name is 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.

Li, Jun;Daniliuc, Constantin G.;Kehr, Gerald;Erker, Gerhard research published 《 An olefin-based multi-component reaction to yield 1,2-azaborolidine derivatives》, the research content is summarized as follows. Reaction of the borane FmesBH2·SMe2 [Fmes: 2,4,6-tris(trifluoromethyl)phenyl] with two molar equivalent of a small series of 1-alkenes followed by treatment with two molar equivalents of the bulky isonitrile CN-Xyl (Xyl: 2,6-dimethylphenyl) gave 1,2-azaborolidine derivatives I [R = Me, Bn, CH2SC6H5, etc.] that exhibited an exocyclic alkene unit and a NHXyl substituent at the heterocyclic core.

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Name: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Jie team published research in Environmental Research in 2021 | 533-73-3

Application of C6H6O3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 533-73-3, formula is C6H6O3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Application of C6H6O3

Li, Jie;Li, Yi;Wu, Haisuo;Naraginti, Saraschandra;Wu, Yunbo research published 《 Facile synthesis of ZnO nanoparticles by Actinidia deliciosa fruit peel extract: Bactericidal, anticancer and detoxification properties》, the research content is summarized as follows. Synthesis of nanoparticles by eco-friendly method pulled an extensive concern worldwide due its biocompatibility and wide range of applications as catalysts, microbicidal agents, cancer treatment, sensors, etc. Though different chem. methods available for preparation of ZnO nanoparticles, synthesis by utilizing plant material is an excellent substitute and green method as well. The present study describes preparation of ZnO nanoparticles by low-cost green synthetic way using Actinidia deliciosa (kiwi) fruit peel extract and its excellent biol. and catalytic properties. The synthesized nanoparticles were well characterized by UV visible spectroscopy, X-ray diffraction (XRD), Fourier transform IR spectroscopy (FTIR), SEM (SEM), Transmission electron microscopy (TEM) and Energy-dispersive X-ray spectroscopy (EDAX). The bactericidal activity of the ZnO nanoparticles was determined by using Staphylococcus aureus (S. aureus), while mechanism of cell death was studied by SEM images. Superior anticancer activity was also observed in inhibiting the colon cancer cells (HCT116) by the ZnO nanoparticles. In addition, ZnO nanoparticles showed efficient photocatalytic activity towards degradation of p-bromophenol, about 96.3% within 120 min. Furthermore, phytotoxicity of the intermediate products was analyzed using Vigna radiata (V. radiata) as a model plant. About 8.0% of germination index (GI) was observed in pure p-BP while it increased to 82.3%, and exhibited that the detoxification of p-BP was attained after 120 min of degradation Thus, the present study demonstrates ZnO nanoparticles prepared from simple, rapid, inexpensive, eco-friendly and efficient green method gives alternative root for biomedicine and wastewater treatment technologies.

Application of C6H6O3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Jia team published research in Food Chemistry in 2022 | 533-73-3

533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., Related Products of 533-73-3

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 533-73-3, formula is C6H6O3, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Related Products of 533-73-3

Li, Jia;Wu, Shimin;Yu, Qinyan;Wang, Jinjin;Deng, Yuliang;Hua, Jinjie;Zhou, Qinghua;Yuan, Haibo;Jiang, Yongwen research published 《 Chemical profile of a novel ripened Pu-erh tea and its metabolic conversion during pile fermentation》, the research content is summarized as follows. Ripened Pu-erh tea is a unique tea type produced from microbial fermentation Recently, a novel ripened Pu-erh tea (NPT) produced using a patented pile fermentation method has become increasingly popular due to its improved flavor and enriched bioactive gallic acid (GA). However, the detailed chem. features of NPT and their formation during pile fermentation remain unclear. Herein, untargeted metabolomics revealed enrichment of GA, amino acids, free sugars and reduction in catechins and flavonol glycosides in NPT. Mainly, GA was 1.99 times higher in NPT than traditional Pu-erh tea (p < 0.001). The metabolic changes were tracked during pile fermentation, and possible pathways were mapped. GA enrichment may be produced from enhanced hydrolysis of galloyl catechins and phenolic acid esters. Degradation of flavonol glycosides and formation of other metabolites were observed This study will advance our understanding of conversions during pile fermentation and provide new insights into directional manufacturing of high-quality ripened tea.

533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., Related Products of 533-73-3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Guanguan team published research in ARKIVOC (Gainesville, FL, United States) in 2018 | 16545-68-9

16545-68-9, Cyclopropanol is a cyclopropane in which a hydrogen atom is replaced by a hydroxy group. It is a member of cyclopropanes and an aliphatic alcohol.
Cyclopropanol is a useful research compound. Its molecular formula is C3H6O and its molecular weight is 58.08 g/mol. The purity is usually 95%.
Cyclopropanol is a cyclic organic compound that is synthesized from sodium hydroxide solution, nitrogen atoms, and carbonyl groups. Cyclopropanol has shown inhibitory effects on inflammatory bowel disease in rats. This drug also inhibits the production of hydrogen chloride and hydrochloric acid in the stomach, which can lead to ulcers. Cyclopropanol has been found to be effective against bowel diseases such as Crohn’s disease and ulcerative colitis. This drug has been shown to have strong antioxidant properties, which may be due to its ability to reduce hydroxyl radicals., Synthetic Route of 16545-68-9

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 16545-68-9, formula is C3H6O, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Synthetic Route of 16545-68-9

Li, Guanguan;Stephen, Michael R.;Kodali, Revathi;Zahn, Nicolas M.;Poe, Michael M.;Tiruveedhula, V. V. N. Phani Babu;Huber, Alec T.;Schussman, Melissa K.;Qualmann, Krista;Panhans, Cristina M.;Raddatz, Nicholas J.;Baker, David A.;Prevot, Thomas D.;Banasr, Mounira;Sibille, Etienne;Arnold, Leggy A.;Cook, James M. research published 《 Synthesis of chiral GABAA receptor subtype selective ligands as potential agents to treat schizophrenia as well as depression》, the research content is summarized as follows. A series of novel imidazobenzodiazepine analogs of the lead chiral ligand SH-053-2’F-S-CH3 (2), an α2/α3/α5 (Bz)GABA (A)ergic receptor subtype selective ligand, which reverses PCP-induced prepulse inhibition (PPI) of acoustic startle, were synthesized. These chiral (S)-CH3 ligands are targeted for the treatment of schizophrenia and depression. These new ligands were designed by modifying the labile ester functionality in 2 to improve the metabolic stability, cytotoxicity, and activity as compared to 2. Based on the data to date, the most promising ligands are the N-cyclopropyl amide GL-I-55 (8c) and the Me bioisostere GL-I-65 (9a). The in vitro metabolic stability, cytotoxicity and in vivo locomotor effects are described in this report. Based on these results, 8c and 9a are the most promising for further in vivo pharmacol.

16545-68-9, Cyclopropanol is a cyclopropane in which a hydrogen atom is replaced by a hydroxy group. It is a member of cyclopropanes and an aliphatic alcohol.
Cyclopropanol is a useful research compound. Its molecular formula is C3H6O and its molecular weight is 58.08 g/mol. The purity is usually 95%.
Cyclopropanol is a cyclic organic compound that is synthesized from sodium hydroxide solution, nitrogen atoms, and carbonyl groups. Cyclopropanol has shown inhibitory effects on inflammatory bowel disease in rats. This drug also inhibits the production of hydrogen chloride and hydrochloric acid in the stomach, which can lead to ulcers. Cyclopropanol has been found to be effective against bowel diseases such as Crohn’s disease and ulcerative colitis. This drug has been shown to have strong antioxidant properties, which may be due to its ability to reduce hydroxyl radicals., Synthetic Route of 16545-68-9

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts