Li, Yong team published research in Organic Letters in 2015 | 16545-68-9

16545-68-9, Cyclopropanol is a cyclopropane in which a hydrogen atom is replaced by a hydroxy group. It is a member of cyclopropanes and an aliphatic alcohol.
Cyclopropanol is a useful research compound. Its molecular formula is C3H6O and its molecular weight is 58.08 g/mol. The purity is usually 95%.
Cyclopropanol is a cyclic organic compound that is synthesized from sodium hydroxide solution, nitrogen atoms, and carbonyl groups. Cyclopropanol has shown inhibitory effects on inflammatory bowel disease in rats. This drug also inhibits the production of hydrogen chloride and hydrochloric acid in the stomach, which can lead to ulcers. Cyclopropanol has been found to be effective against bowel diseases such as Crohn’s disease and ulcerative colitis. This drug has been shown to have strong antioxidant properties, which may be due to its ability to reduce hydroxyl radicals., Category: alcohols-buliding-blocks

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 16545-68-9, formula is C3H6O, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Category: alcohols-buliding-blocks

Li, Yong;Ye, Zhishi;Bellman, Tabitha M.;Chi, Teng;Dai, Mingji research published 《 Efficient Synthesis of β-CF3/SCF3-Substituted Carbonyls via Copper-Catalyzed Electrophilic Ring-Opening Cross-Coupling of Cyclopropanols》, the research content is summarized as follows. The first copper-catalyzed ring-opening electrophilic trifluoromethylation and trifluoromethylthiolation of cyclopropanols to form Csp3-CF3 and Csp3-SCF3 bonds have been realized. These transformations are efficient for the synthesis of β-CF3– and β-SCF3-substituted carbonyl compounds that are otherwise challenging to access. The reaction conditions are mild and tolerate a wide range of functional groups. Application to a concise synthesis of LY2409021, a glucagon receptor antagonist that is used in clin. trials for type 2 diabetes mellitus, is reported as well.

16545-68-9, Cyclopropanol is a cyclopropane in which a hydrogen atom is replaced by a hydroxy group. It is a member of cyclopropanes and an aliphatic alcohol.
Cyclopropanol is a useful research compound. Its molecular formula is C3H6O and its molecular weight is 58.08 g/mol. The purity is usually 95%.
Cyclopropanol is a cyclic organic compound that is synthesized from sodium hydroxide solution, nitrogen atoms, and carbonyl groups. Cyclopropanol has shown inhibitory effects on inflammatory bowel disease in rats. This drug also inhibits the production of hydrogen chloride and hydrochloric acid in the stomach, which can lead to ulcers. Cyclopropanol has been found to be effective against bowel diseases such as Crohn’s disease and ulcerative colitis. This drug has been shown to have strong antioxidant properties, which may be due to its ability to reduce hydroxyl radicals., Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Yangyang team published research in ACS Catalysis in 2020 | 72824-04-5

Safety of 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 72824-04-5, formula is C9H17BO2, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Safety of 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Li, Yangyang;Wei, Hong;Wu, Dong;Li, Zheqi;Wang, Wang;Yin, Guoyin research published 《 Nickel-Catalyzed Chemodivergent 1,1-Difunctionalization of Unactivated α-Olefins with Alkynyl Electrophiles and B2pin2》, the research content is summarized as follows. A nickel-catalyzed, chemodivergent 1,1-alkynylboration, and 1,1-dialkynylation of unactivated α-olefins was reported. This study not only provided an efficient and modular protocol for the divergent synthesis of propargylic boronic esters, their corresponding alcs., and gem-dialkynylalkanes I [R = TIPS, C(Me)2OTBS, C(4-ClC6H4)2OTBS, etc.; R1 = OH, CCTIPS; R2 = Me, n-hexyl, Ph(CH2)2, etc.] but also achieved a controllable, single or double cross-coupling of Ni/B bimetallic intermediates. Mechanistic studies revealed that diboron reagent (B2pin2) plays a significant role in dialkynylation reaction, serving as both the reductant and transient assisting group. Notably, both reactions showed high regioselectivities and good functional group tolerance. In addition, the synthetic value of products was demonstrated with several downstream transformations.

Safety of 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Yan team published research in Journal of Medicinal Chemistry in 2021 | 533-73-3

533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., Name: Benzene-1,2,4-triol

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 533-73-3, formula is C6H6O3, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Name: Benzene-1,2,4-triol

Li, Yan;Fan, Wenjie;Gong, Qineng;Tian, Jie;Zhou, Mi;Li, Qing;Uwituze, Laura B.;Zhang, Zhichao;Hong, Ran;Wang, Renxiao research published 《 Structure-Based Optimization of 3-Phenyl-N-(2-(3-phenylureido)ethyl)thiophene-2-sulfonamide Derivatives as Selective Mcl-1 Inhibitors》, the research content is summarized as follows. Selective Mcl-1 inhibitors may overcome the drug resistance caused by current anti-apoptotic Bcl-2 protein inhibitors in tumors with Mcl-1 overexpression. Based on previously discovered compounds with a 3-phenylthiophene-2-sulfonamide core moiety, in this work, we have obtained new compounds with improved binding affinity and/or selectivity under the guidance of structure-based design. The most potent compounds achieved sub-micromolar binding affinities to Mcl-1 (Ki ~0.4μM) and good cytotoxicity (IC50 < 10μM) on several tumor cells. 15N-heteronuclear single-quantum coherence NMR spectra suggested that these compounds bound to the BH3-binding groove on Mcl-1. Several cellular assays revealed that FWJ-D4 as well as its precursor FWJ-D5 effectively induced caspase-dependent apoptosis, and their target engagement at Mcl-1 was confirmed by co-immunoprecipitation experiments Treatment with FWJ-D5 at 50 mg/kg every 2 days on an RS4;11 xenograft mouse model for 22 days led to 75% reduction in tumor volume without body weight loss.

533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., Name: Benzene-1,2,4-triol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Xiong team published research in Food Chemistry: X in 2021 | 527-07-1

Electric Literature of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

In general, the hydroxyl group makes alcohols polar. 527-07-1, formula is C6H11NaO7, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Electric Literature of 527-07-1

Li, Xiong;Gong, Yufeng;Yao, Wanzi;Chen, Xiaoyong;Xian, Jiebei;You, Lijun;Fardim, Pedro research published 《 Structural characterization and protective effects of polysaccharide from Gracilaria lemaneiformis on LPS-induced injury in IEC-6 cells》, the research content is summarized as follows. This study was aimed to characterize Gracilaria lemaneiformis polysaccharides and evaluate their protective effects on Lipopolysaccharide-induced injury in IEC-6 cells. The G. lemaneiformis polysaccharide was degraded by UV/H2O2 treatment and purified to three fractions named GLP-1.0 M, GLP-1.4 M and GLP-1.6 M. The purified fractions were mainly composed of galactose, glucose and xylose. The structural anal. showed that GLP-1.6 M was a typical sulfated red alga polysaccharide containing the linear backbone of β-(1 → 3)- and α-(1 → 4)-linked galactosyl residues, anhydro-galactose units. In the Lipopolysaccharide-induced IEC-6 cells model, GLP-1.6 M exerted the strongest in vitro anti-inflammatory activity by inhibiting the release and expressions of tumor necrosis factor-α, interleukin-6 and interleukin-1β by 89.93%, 67.82% and 38.06%, resp. Meanwhile, GLP-1.6 M enhanced the intestinal barrier function via up-regulating the expressions of tight junctions and mucin. Therefore, the purified polysaccharide from G. lemaneiformis could be a promising candidate for maintaining intestinal health in the food and pharmaceutical industries.

Electric Literature of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Xiaoyan team published research in Pigment & Resin Technology in 2021 | 527-07-1

Reference of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 527-07-1, formula is C6H11NaO7, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Reference of 527-07-1

Li, Xiaoyan;Wang, MengQian;Wu, Gang;Yao, Jiming research published 《 Electrochemical reduction of indigo by combination of sodium borohydride and copper salt》, the research content is summarized as follows. The purpose of this study is to improve the performance of sodium borohydride in reducing indigo at room temperature, the divalent copper ion complex was combined with electrochem. technol. for the reduction of indigo by sodium borohydride. According to the K/S value of the dyed cloth sample, find a more suitable ligand for the copper ion in the catholyte. Response surface anal. tests were performed to evaluate the effects of sodium borohydride concentration, sodium hydroxide concentration and copper sulfate pentahydrate concentration on the reduction potential of the dye solution and the K/S value of the dyed fabric samples. Sodium gluconate was found to be a more suitable ligand for copper ions in catholyte. The effects of NaOH concentration as well as the interaction of NaBH4 and NaOH on the reduction potential of the catholyte and the K/S value of the dyed fabric samples were extremely significant. The optimal concentrations of NaBH4, NaOH and CuSO4·5H2O were 0.5, 2.5 and 0.65 g/L. In the case of the optimized condition, the absolute value of the reduction potential was 968, and the K/S value was 11.92, which is comparable with that of the conventional reduction process with sodium dithionite. The divalent copper ion complex combined with electrochem. technol. was applied in the process of reducing indigo with NaBH4 at room temperature

Reference of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Xiaoyan team published research in Journal of Cleaner Production in 2020 | 527-07-1

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, COA of Formula: C6H11NaO7

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 527-07-1, formula is C6H11NaO7, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. COA of Formula: C6H11NaO7

Li, Xiaoyan;Wang, Kangkang;Wang, Mengqian;Zhang, Wei;Yao, Jiming;Komarneni, Sridhar research published 《 Sustainable electrochemical dyeing of indigo with Fe(II)-based complexes》, the research content is summarized as follows. In order to avoid the intensive burden of sewage treatment in the traditional dyeing process of indigo caused by the heavy usage of sodium dithionite (Na2S2O4), an indirect electrochem. reduction dyeing method for denim fabrics was carried out. The indirect electrochem. reduction dyeing with different iron-based complexes was explored by cyclic voltammetry. In addition, the stability of the complex solution, the reduction potential of the dye solution, the rate of dye reduction (Re) and ferrous ion conversion (Xe) in the electrochem. process were investigated, which showed that the Fe(II)-DGS-Abal B complex containing ferrous sulfate, sodium gluconate and Abal B (a complexing agent with high alkali resistance and elec. conductivity based on triethanolamine) had stronger reducing capacity. Furthermore, orthogonal experiments and gray clustering anal. were utilized to optimize the indirect electrochem. dyeing process for denim fabric. Under the optimized electrochem. reduction dyeing process, the rate of dye reduction could be up to 91.23% and the K/S value of dyed denim fabric could reach 14.75, which is 6.58% higher than that of the traditional dyeing process. Besides, the dyeing depth is nearly invariable within 7 times of cyclic dyeing and the dyeing liquid is more susceptible to biol. and chem. degradation Compared with the traditional reduction dyeing with Na2S2O4 at higher temperature, the electrochem. reduction dyeing strategy uses elec. energy to reduce indigo at room temperature, and the reduction medium could be sustainably utilized by the circulation pump after the cyclic electrochem. reduction dyeing is completed, which not only decreases the COD value of dyeing wastewater, but also saves 63.5% of the economic cost. The eco-friendly electrochem. dyeing strategy presented here with obvious economic benefits could significantly contribute to enhance the sustainability of dyeing process for denim production

527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, COA of Formula: C6H11NaO7

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Xiaowei team published research in Organic Letters in 2021 | 647-42-7

647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., Safety of 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 647-42-7, formula is C8H5F13O, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Safety of 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol

Li, Xiaowei;Li, Yuxiu;Zhang, Zhong;Shi, Xiaolin;Liu, Ruihua;Wang, Zemin;Li, Xiangqian;Shi, Dayong research published 《 Nickel-Catalyzed Arylation of C(sp3)-O Bonds in Allylic Alkyl Ethers with Organoboron Compounds》, the research content is summarized as follows. A nickel-catalyzed cross-coupling of allylic alkyl ethers with organoboron compounds through the cleavage of the inert C(sp3)-O(alkyl) bonds is described. Several types of allylic alkyl ethers can be coupled with various boronic acids or their derivatives to give the corresponding products in good to excellent yields with wide functional group tolerance and excellent regioselectivity. The gram-scale reaction and late-stage modification of biol. active compounds further prove the practicality of this synthetic method.

647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., Safety of 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Tao team published research in Journal of Hazardous Materials in 2021 | 533-73-3

Application of C6H6O3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Application of C6H6O3, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 533-73-3, name is Benzene-1,2,4-triol, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.

Li, Tao;Abdelhaleem, Amal;Chu, Wei;Xu, Weicheng research published 《 Efficient activation of oxone by pyrite for the degradation of propanil: Kinetics and degradation pathway》, the research content is summarized as follows. Pyrite (FeS2) is an abundant sulfide-associated iron mineral that exists in the earth. In this study, the pyrite/oxone process was demonstrated to be an effective approach for the catalytic degradation of propanil, where more than 90% decay ([propanil]0 = 0.01 mM) was achieved within 15 min. Typically, the effects of various exptl. parameters, including catalyst loading, oxone dosage, propanil concentration, and initial solution pH, were examined Two optimal reaction pH values were observed at pH 9.1 and pH 2.9. The generated SO4 and OH were verified to be the dominant reactive radicals and primarily responsible for the propanil degradation Both Fe(II) regeneration and sulfur conversion play an important role in oxone activation mechanism and effectively aid the catalytic activity of pyrite. Different co-existing natural water constituents exert dissimilar effects on the pyrite/oxone process. Addnl., the reusability test of pyrite exhibited a reasonable catalytic activity. The pyrite/oxone process was proven efficient in terms of propanil mineralization. A series of reaction intermediates was detected via four major degradation pathways. Overall, the pyrite/oxone process could be a promising approach for the removal of organic compounds in water.

Application of C6H6O3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Sida team published research in Angewandte Chemie, International Edition in 2021 | 72824-04-5

Electric Literature of 72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 72824-04-5, formula is C9H17BO2, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Electric Literature of 72824-04-5

Li, Sida;Hu, Chenyang;Cui, Xin;Zhang, Jiong;Liu, Liu Leo;Wu, Lipeng research published 《 Site-Fixed Hydroboration of Terminal and Internal Alkenes using BX3/iPr2NEt》, the research content is summarized as follows. An unprecedented and general hydroboration of alkenes with BX3 (X = Br, Cl) as the boration reagent in the presence of iPr2NEt is reported. The addition of iPr2NEt not only suppresses alkene polymerization and haloboration side reactions but also provides an H source for hydroboration. More importantly, the site-fixed installation of a boryl group at the original position of the internal double bond is readily achieved in contrast to conventional transition-metal-catalyzed hydroboration processes. Further application to the synthesis of 1,n-diborylalkanes (n = 3-10) is also demonstrated. Preliminary mechanistic studies reveal a major reaction pathway that involves radical species and operates through a frustrated Lewis pair type single-electron-transfer mechanism.

Electric Literature of 72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Li, Ran team published research in Journal of Cleaner Production in 2021 | 527-07-1

Category: alcohols-buliding-blocks, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

In general, the hydroxyl group makes alcohols polar. 527-07-1, formula is C6H11NaO7, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Category: alcohols-buliding-blocks

Li, Ran;Lei, Lei;Sui, Tongbo;Plank, Johann research published 《 Approaches to achieve fluidity retention in low-carbon calcined clay blended cements》, the research content is summarized as follows. High meta kaolin content (e.g. 50 wt%) present in a calcined clay blended into a composite cement is pos. with respect to early strength development, but significantly decreases the dispersing effectiveness of PCE superplasticizers. Moreover, it has been observed that for such cements, slump retention is much more difficult to achieve than in OPC or other composite cements. In this study, several approaches to achieve extended workability times in mortars prepared from composite cements holding 20-40 wt % of a calcined clay were investigated. First, it was found that the slump retaining performance of a common industrial ready-mix type HPEG PCE rapidly decreased when the portion of calcined clay was increased in the blended cement. Furthermore, a combination of the ready-mix HPEG PCE and a retarder (sodium gluconate) which is commonly applied in ready-mix concrete also could not much improve fluidity retention, thus highlighting the difficulty of slump retention for such cements. To solve this problem, a new admixture formulation is introduced based on a combination of a precast type HPEG PCE and a novel PCE-LDH nanocomposite. This approach to improve slump retention was tested on composite cements holding 20-40 wt % of a calcined clay high in meta kaolin content. Mortar tests revealed that the high water-reducing (precast) type HPEG PCE and the PCE-LDH nanocomposite work synergistically and can achieve a significant improvement in fluidity retention of such calcined clay blended cements. A mechanistic investigation revealed that the PCE which was intercalated in between the [Ca2Al(OH)6]+ main layers of the PCE-LDH nanocomposite is released gradually from the mixed metal hydroxide via anionic exchange with sulfate anions present in the pore solution This way, an extended workability time was achieved in the mortar.

Category: alcohols-buliding-blocks, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts