Sang, Ruocheng team published research in Angewandte Chemie, International Edition in 2019 | 141699-55-0

SDS of cas: 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 141699-55-0, formula is C8H15NO3, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. SDS of cas: 141699-55-0

Sang, Ruocheng;Korkis, Stamatis E.;Su, Wanqi;Ye, Fei;Engl, Pascal S.;Berger, Florian;Ritter, Tobias research published 《 Site-selective C-H Oxygenation via Aryl Sulfonium Salts》, the research content is summarized as follows. Herein, we report a two-step process forming arene C-O bonds in excellent site-selectivity at a late-stage. The C-O bond formation is achieved by selective introduction of a thianthrenium group, which is then converted into C-O bonds using photoredox chem. Electron-rich, -poor and -neutral arenes as well as complex drug-like small mols. are successfully transformed into both phenols and various ethers. The sequence differs conceptually from all previous arene oxygenation reactions in that oxygen functionality can be incorporated into complex small mols. at a late stage site-selectively, which has not been shown via aryl halides.

SDS of cas: 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Sandvoss, Alexander team published research in Chemical Science in 2022 | 7748-36-9

Quality Control of 7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., 7748-36-9.

Quality Control of 7748-36-9, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 7748-36-9, name is Oxetan-3-ol, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.

Sandvoss, Alexander;Maag, Henning;Daniliuc, Constantin G.;Schollmeyer, Dieter;Wahl, Johannes M. research published 《 Dynamic kinetic resolution of transient hemiketals: a strategy for the desymmetrisation of prochiral oxetanols》, the research content is summarized as follows. Identification of an electron poor trifluoroacetophenone allows the formation of uniquely stable hemiketals from prochiral oxetanols. When exposed to a cobalt(II) catalyst, efficient ring-opening to densely functionalized dioxolanes was observed Mechanistic studies suggested an unprecedented redox process between the cobalt(II) catalyst and the hemiketal that initiates the oxetane-opening. Based on this observation, a dynamic kinetic resolution of the transient hemiketals was explored that used a Katsuki-type ligand for stereoinduction (up to 99 : 1 dr and 96 : 4 er) and allowed a variety of 1,3-dioxolanes to be accessed (20 examples up to 98% yield).

Quality Control of 7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., 7748-36-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Sandu, Mariya P. team published research in New Journal of Chemistry in 2021 | 527-07-1

Reference of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 527-07-1, formula is C6H11NaO7, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Reference of 527-07-1

Sandu, Mariya P.;Kovtunov, Mikhail A.;Gromov, Nikolay V.;Kurzina, Irina A. research published 《 Effects of external parameters and mass-transfer on the glucose oxidation process catalyzed by Pd-Bi/Al2O3》, the research content is summarized as follows. The catalytic properties of a bimetallic 3.5% Pd-2.4% Bi catalyst supported on Al2O3 were studied in a glucose oxidation reaction in sodium gluconate at various pHs, temperatures and [Glu] : [Pd] ratios. It was found that pH 9 and temperature 60°C are the best conditions for the Pd3Bi/Al2O3 catalytic system. These reaction parameters contribute to obtaining sodium gluconate with 56.6% yield while maintaining a selectivity of 99.9%. The calculated activation energy was 67.7 kJ mol-1. The oxygen transfer rate study allowed us to conclude that the reaction proceeds in a kinetic mode. The catalyst showed activity and stability in three catalytic cycles (XGlu = 56.6-62.8, SSGlu > 99.9%). The decrease in catalytic activity in the fourth and fifth catalytic cycles is associated with a change in the valence-phase state of the catalyst surface established using XPS.

Reference of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Samarghandi, Mohammad Reza team published research in Chemosphere in 2021 | 533-73-3

SDS of cas: 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 533-73-3, formula is C6H6O3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , SDS of cas: 533-73-3

Samarghandi, Mohammad Reza;Dargahi, Abdollah;Rahmani, Alireza;Shabanloo, Amir;Ansari, Amin;Nematollahi, Davood research published 《 Application of a fluidized three-dimensional electrochemical reactor with Ti/SnO2-Sb/β-PbO2 anode and granular activated carbon particles for degradation and mineralization of 2,4-dichlorophenol: Process optimization and degradation pathway》, the research content is summarized as follows. A three-dimensional electrochem. reactor with Ti/SnO2-Sb/β-PbO2 anode and granular activated carbon (3DER-GAC) particle electrodes were used for degradation of 2,4-dichlorophenol (2,4-DCP). Process modeling and optimization were performed using an orthogonal central composite design (OCCD) and genetic algorithm (GA), resp. Ti/SnO2-Sb/β-PbO2 anode was prepared by electrochem. deposition method and then its properties were studied by FESEM, EDX, XRD, Linear sweep voltammetry and accelerated lifetime test techniques. The results showed that lead oxide was precipitated as highly compact pyramidal clusters in the form of β-PbO2 on the electrode surface. In addition, the prepared anode had high stability (170 h) and oxygen evolution potential (2.32 V). A robust quadratic model (p-value < 0.0001 and R2 > 0.99) was developed to predict the 2,4-DCP removal efficiency in the 3DER-GAC system. Under optimal conditions (pH = 4.98, Na2SO4 concentration = 0.07 M, c.d. = 35 mA cm-2, GAC amount = 25 g and reaction time = 50 min), the removal efficiency of 2,4-DCP in the 3DER-GAC system and the sep. electrochem. degradation process (without GAC particle electrode) were 99.8 and 71%, resp. At a reaction time of 80 min, the TOC removal efficiencies in the 3DER-GAC and the sep. electrochem. degradation system were 100 and 57.5%, resp. Accordingly, the energy consumed in these two systems was calculated to be 0.81 and 1.57 kWh g-1 TOC, resp. Based on the results of LC-MS anal., possible degradation pathways of 2,4-DCP were proposed. Trimerization and ring opening reactions were the two dominant mechanisms in 2,4-DCP degradation

SDS of cas: 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Sakr, Samar team published research in Environmental Toxicology in 2021 | 24034-73-9

Computed Properties of 24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, 24034-73-9.

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 24034-73-9, formula is C20H34O, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Computed Properties of 24034-73-9

Sakr, Samar;A. Rashad, Walaa;Abaza, Marwa T. research published 《 The ameliorative effect of Moringa oleifera oil on tributyltin-induced brain toxicity in albino rats》, the research content is summarized as follows. Tributyltin (TBT) is an organotin compound widely used as a biocide in antifouling paints. Moringa oleifera oil (MOO) has a promising antioxidant potential, which necessitates further exploration. This study was conducted to investigate the potential protective effect of MOO against TBT-induced brain toxicity. The 30 rats were grouped into five groups (six each), Group I neg. control, Group II pos. control (vehicle), Group III MOO (5 mL/kg body weight [b.weight]), Group IV TBT (10 mg/kg b.weight), and Group V TBT & MOO. All treatments were given orally for 28 days. Thereafter, brains were exposed to oxidative stress and neurol. parameters analyses. Histopathol. and immunohistochem. (caspase-3, Bax, Bcl-2) examinations were also carried out. In rats administered TBT, increased malondialdehyde level, decreased reduced glutathione, and low total antioxidant capacity levels were in support of oxidative stress mechanism. Neurotoxicity was indicated by high nitric oxide level and increased acetylcholinestrase activity. Along with the histopathol. alterations, the dysregulated expression of caspase-3, Bax, and Bcl-2 were indicative of the apoptotic mechanism mediated by TBT. Co-administration of MOO with TBT ameliorated the aforementioned toxic effects. In conclusion, TBT causes brain toxicity via oxidative, nitrosative, and apoptotic mechanisms. MOO demonstrates protective effect against TBT-induced brain toxicity mostly via potent antioxidant and antiapoptotic properties.

Computed Properties of 24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, 24034-73-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Sakai, Holt A. team published research in Journal of the American Chemical Society in 2022 | 7748-36-9

Computed Properties of 7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., 7748-36-9.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 7748-36-9, formula is C3H6O2, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Computed Properties of 7748-36-9

Sakai, Holt A.;MacMillan, David W. C. research published 《 Nontraditional Fragment Couplings of Alcohols and Carboxylic Acids: C(sp3)-C(sp3) Cross-Coupling via Radical Sorting》, the research content is summarized as follows. In this report, the C(sp3)-C(sp3) cross-coupling of alcs. and carboxylic acids through the dual combination of N-heterocyclic carbene (NHC)-mediated deoxygenation and hypervalent iodine-mediated decarboxylation were described. This mild and practical Ni-catalyzed radical-coupling protocol was employed to prepare a wide array of alkyl-alkyl cross-coupled products, including highly congested quaternary carbon centers from the corresponding tertiary alcs. or tertiary carboxylic acids. Synthetic applications of this methodol. to alc. C1-alkylation and formal homologation, as well as to the late-stage functionalization of drugs, natural products, and biomols. were demonstrated.

Computed Properties of 7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., 7748-36-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Russo, Cholena L. team published research in Polymer Preprints (American Chemical Society, Division of Polymer Chemistry) in 2012 | 7748-36-9

Category: alcohols-buliding-blocks, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., 7748-36-9.

Category: alcohols-buliding-blocks, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 7748-36-9, name is Oxetan-3-ol, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.

Russo, Cholena L.;Vashi, Mitra R.;Royappa, A. Timothy research published 《 Synthesis and characterization of hyperbranched poly(3-oxetanol)》, the research content is summarized as follows. Poly(3-oxetanol), a hyperbranched polyether-polyol, was synthesized by boron trifluoride-catalyzed cationic ring-opening polymerization in dichloromethane. This polymer is an analog of the more well-studied polymer, polyglycidol. Both polyglycidol and poly(3-oxetanol) are hyperbranched polymers. Because of this, and also since both these polymers are formed from monomers that may be considered anhydrides of the biocompatible mol. glycerol, they are under consideration for biomedical applications such as drug delivery. The spectral and thermal properties of poly(3-oxetanol) were analyzed and compared to those of polyglycidol. Both polymerizations were exothermic; however, the exothermicity was less dramatic with 3-oxetanol than with glycidol due to the lesser ring strain in 3-oxetanol.

Category: alcohols-buliding-blocks, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., 7748-36-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Rukmangathan, M. team published research in Journal of Chemical and Pharmaceutical Research in 2012 | 16545-68-9

Category: alcohols-buliding-blocks, Cyclopropanol is a cyclopropane in which a hydrogen atom is replaced by a hydroxy group. It is a member of cyclopropanes and an aliphatic alcohol.
Cyclopropanol is a useful research compound. Its molecular formula is C3H6O and its molecular weight is 58.08 g/mol. The purity is usually 95%.
Cyclopropanol is a cyclic organic compound that is synthesized from sodium hydroxide solution, nitrogen atoms, and carbonyl groups. Cyclopropanol has shown inhibitory effects on inflammatory bowel disease in rats. This drug also inhibits the production of hydrogen chloride and hydrochloric acid in the stomach, which can lead to ulcers. Cyclopropanol has been found to be effective against bowel diseases such as Crohn’s disease and ulcerative colitis. This drug has been shown to have strong antioxidant properties, which may be due to its ability to reduce hydroxyl radicals., 16545-68-9.

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 16545-68-9, formula is C3H6O, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Category: alcohols-buliding-blocks

Rukmangathan, M.;Santhosh Kumar, V.;Ramkumar, B. research published 《 Oxidation of Cyclanols by 1-chloro benzimidazole in aqueous acetic acid medium: a kinetic approach》, the research content is summarized as follows. Kinetic investigation on oxidation of some Cyclanols (Cyclopropanol, Cyclobutanol, Cyclopentanol, Cyclohexanol and Cycloheptanol) by 1-chlorobenzimidazole (CBI) has been studied in 80% acetic acid – water (volume/volume) medium. The reaction exhibits first order rate dependence each with respect to [CBI], [Cyclanols] and [H+]. The increase in dielec. constant of the medium increases the rate of the reaction. The variation of ionic strength has no significant effect on the reaction rate. The reaction does not induce any polymerization of acylonitrile. The addition of benzimidazole has no appreciable effect on the reaction rate. Thermodn. parameters have been evaluated from Eyring plots by studying the reaction at different temperatures A most probable mechanism and an appropriate rate law have been deduced for the observed kinetic data.

Category: alcohols-buliding-blocks, Cyclopropanol is a cyclopropane in which a hydrogen atom is replaced by a hydroxy group. It is a member of cyclopropanes and an aliphatic alcohol.
Cyclopropanol is a useful research compound. Its molecular formula is C3H6O and its molecular weight is 58.08 g/mol. The purity is usually 95%.
Cyclopropanol is a cyclic organic compound that is synthesized from sodium hydroxide solution, nitrogen atoms, and carbonyl groups. Cyclopropanol has shown inhibitory effects on inflammatory bowel disease in rats. This drug also inhibits the production of hydrogen chloride and hydrochloric acid in the stomach, which can lead to ulcers. Cyclopropanol has been found to be effective against bowel diseases such as Crohn’s disease and ulcerative colitis. This drug has been shown to have strong antioxidant properties, which may be due to its ability to reduce hydroxyl radicals., 16545-68-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Rueeger, Heinrich team published research in Journal of Medicinal Chemistry in 2012 | 7748-36-9

Computed Properties of 7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., 7748-36-9.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 7748-36-9, formula is C3H6O2, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Computed Properties of 7748-36-9

Rueeger, Heinrich;Lueoend, Rainer;Rogel, Olivier;Rondeau, Jean-Michel;Mobitz, Henrik;Machauer, Rainer;Jacobson, Laura;Staufenbiel, Matthias;Desrayaud, Sandrine;Neumann, Ulf research published 《 Discovery of Cyclic Sulfone Hydroxyethylamines as Potent and Selective β-Site APP-Cleaving Enzyme 1 (BACE1) Inhibitors: Structure-Based Design and in Vivo Reduction of Amyloid β-Peptides》, the research content is summarized as follows. Structure-based design of a series of cyclic hydroxyethylamine BACE1 inhibitors allowed the rational incorporation of prime- and nonprime-side fragments to a central core template without any amide functionality. The core scaffold selection and the structure-activity relationship development were supported by mol. modeling studies and by x-ray anal. of BACE1 complexes with various ligands to expedite the optimization of the series. The direct extension from P1-aryl- and heteroaryl moieties into the S3 binding pocket allowed the enhancement of potency and selectivity over cathepsin D. Restraining the design and synthesis of compounds to a physicochem. property space consistent with central nervous system drugs led to inhibitors with improved blood-brain barrier permeability. Guided by structure-based optimization, highly potent compounds were obtained, such as I, with enzymic and cellular IC50 values of 2 and 50 nM, resp., and with >200-fold selectivity over cathepsin D. Pharmacodynamic studies in APP51/16 transgenic mice at oral doses of 180 μmol/kg demonstrated significant reduction of brain Aβ levels.

Computed Properties of 7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., 7748-36-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Rudolph, Joachim team published research in Journal of Medicinal Chemistry in 2016 | 141699-55-0

Synthetic Route of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 141699-55-0, formula is C8H15NO3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Synthetic Route of 141699-55-0

Rudolph, Joachim;Murray, Lesley J.;Ndubaku, Chudi O.;O’Brien, Thomas;Blackwood, Elizabeth;Wang, Weiru;Aliagas, Ignacio;Gazzard, Lewis;Crawford, James J.;Drobnick, Joy;Lee, Wendy;Zhao, Xianrui;Hoeflich, Klaus P.;Favor, David A.;Dong, Ping;Zhang, Haiming;Heise, Christopher E.;Oh, Angela;Ong, Christy C.;La, Hank;Chakravarty, Paroma;Chan, Connie;Jakubiak, Diana;Epler, Jennifer;Ramaswamy, Sreemathy;Vega, Roxanne;Cain, Gary;Diaz, Dolores;Zhong, Yu research published 《 Chemically Diverse Group I p21-Activated Kinase (PAK) Inhibitors Impart Acute Cardiovascular Toxicity with a Narrow Therapeutic Window》, the research content is summarized as follows. P21-activated kinase 1 (PAK1) has an important role in transducing signals in several oncogenic pathways. The concept of inhibiting this kinase has garnered significant interest over the past decade, particularly for targeting cancers associated with PAK1 amplification. Animal studies with the selective group I PAK (pan-PAK1, 2, 3) inhibitor G-5555 from the pyrido[2,3-d]pyrimidin-7-one class uncovered acute toxicity with a narrow therapeutic window. To attempt mitigating the toxicity, we introduced significant structural changes, culminating in the discovery of the potent pyridone side chain analog G-9791. Mouse tolerability studies with this compound, other members of this series, and compounds from two structurally distinct classes revealed persistent toxicity and a correlation of min. toxic concentrations and PAK1/2 mediated cellular potencies. Broad screening of selected PAK inhibitors revealed PAK1, 2, and 3 as the only overlapping targets. Our data suggest acute cardiovascular toxicity resulting from the inhibition of PAK2, which may be enhanced by PAK1 inhibition, and cautions against continued pursuit of pan-group I PAK inhibitors in drug discovery.

Synthetic Route of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts