Bavo, Francesco team published research on Journal of Medicinal Chemistry in 2022 | 141699-55-0

Synthetic Route of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 141699-55-0, formula is C8H15NO3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Synthetic Route of 141699-55-0

Bavo, Francesco;Pallavicini, Marco;Pucci, Susanna;Appiani, Rebecca;Giraudo, Alessandro;Eaton, Brek;Lucero, Linda;Gotti, Cecilia;Moretti, Milena;Whiteaker, Paul;Bolchi, Cristiano research published 《 From 2-Triethylammonium Ethyl Ether of 4-Stilbenol (MG624) to Selective Small-Molecule Antagonists of Human α9α10 Nicotinic Receptor by Modifications at the Ammonium Ethyl Residue》, the research content is summarized as follows. Nicotinic acetylcholine receptors containing α9 subunits (α9*-nAChRs) are potential druggable targets arousing great interest for pain treatment alternative to opioids. Nonpeptidic small mols. selectively acting as α9*-nAChRs antagonists still remain an unattained goal. Here, through modifications of the cationic head and the ethylene linker, we have converted the 2-triethylammonium Et ether of 4-stilbenol (MG624), a well-known α7- and α9*-nAChRs antagonist, into some selective antagonists of human α9*-nAChR. Among these, the compound with cyclohexyldimethylammonium head (7) stands out for having no α7-nAChR agonist or antagonist effect along with very low affinity at both α7- and α3β4-nAChRs. At supra-micromolar concentrations, 7 and the other selective α9* antagonists behaved as partial agonists at α9*-nAChRs with a very brief response, followed by rebound current once the application is stopped and the channel is disengaged. The small or null postapplication activity of ACh seems to be related to the slow recovery of the rebound current.

Synthetic Route of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Bauza, Antonio team published research on Chemical Physics Letters in 2012 | 16545-68-9

Electric Literature of 16545-68-9, Cyclopropanol is a cyclopropane in which a hydrogen atom is replaced by a hydroxy group. It is a member of cyclopropanes and an aliphatic alcohol.
Cyclopropanol is a useful research compound. Its molecular formula is C3H6O and its molecular weight is 58.08 g/mol. The purity is usually 95%.
Cyclopropanol is a cyclic organic compound that is synthesized from sodium hydroxide solution, nitrogen atoms, and carbonyl groups. Cyclopropanol has shown inhibitory effects on inflammatory bowel disease in rats. This drug also inhibits the production of hydrogen chloride and hydrochloric acid in the stomach, which can lead to ulcers. Cyclopropanol has been found to be effective against bowel diseases such as Crohn’s disease and ulcerative colitis. This drug has been shown to have strong antioxidant properties, which may be due to its ability to reduce hydroxyl radicals., 16545-68-9.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 16545-68-9, formula is C3H6O, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Electric Literature of 16545-68-9

Bauza, Antonio;Quinonero, David;Deya, Pere M.;Frontera, Antonio research published 《 Estimating ring strain energies in small carbocycles by means of the Bader’s theory of atoms-in-molecules’》, the research content is summarized as follows. We report an easy way to estimate ring strain energies using the Bader’s theory of atoms-in-mols.’. We demonstrate that the value of the Lagrange kinetic energy d. at the ring critical point correlates with the ring strain energies in several three-, four-, five- and six-membered carbocycles, therefore it can be used as a measure of ring strain. Since it is easy to calculate and, in contrast to the ring strain energy calculations, it is free from other influences, as the number and type of reference mols. and type of reaction (isodesmic, homodesmotic, hyperhomodesmotic, etc.). Its use in heterocycles requires more investigation.

Electric Literature of 16545-68-9, Cyclopropanol is a cyclopropane in which a hydrogen atom is replaced by a hydroxy group. It is a member of cyclopropanes and an aliphatic alcohol.
Cyclopropanol is a useful research compound. Its molecular formula is C3H6O and its molecular weight is 58.08 g/mol. The purity is usually 95%.
Cyclopropanol is a cyclic organic compound that is synthesized from sodium hydroxide solution, nitrogen atoms, and carbonyl groups. Cyclopropanol has shown inhibitory effects on inflammatory bowel disease in rats. This drug also inhibits the production of hydrogen chloride and hydrochloric acid in the stomach, which can lead to ulcers. Cyclopropanol has been found to be effective against bowel diseases such as Crohn’s disease and ulcerative colitis. This drug has been shown to have strong antioxidant properties, which may be due to its ability to reduce hydroxyl radicals., 16545-68-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Baumann, Andreas N. team published research on Organic Letters in 2018 | 141699-55-0

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Application of C8H15NO3

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 141699-55-0, formula is C8H15NO3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Application of C8H15NO3

Baumann, Andreas N.;Reiners, Felix;Juli, Thomas;Didier, Dorian research published 《 Chemodivergent and Stereoselective Access to Fused Isoxazoline Azetidines and Thietanes through [3 + 2]-Cycloadditions》, the research content is summarized as follows. By combining efficient methodologies for the preparation of substituted azetines and thietes with a highly regio- and diastereoselective [3 + 2]-cycloaddition, a straightforward pathway for the synthesis of fused isoxazoline azetidines and thietanes has been designed. With minimal steps and starting from com. sources, a new library of elaborated architectures was synthesized opening up a new class of mols. with large potential in pharmacol. Finally, a retro [2 + 2]-cycloaddition leading to substituted isoxazoles is described.

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Application of C8H15NO3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Baum, Kurt team published research on Journal of Organic Chemistry in 1983 | 7748-36-9

Application In Synthesis of 7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., 7748-36-9.

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 7748-36-9, formula is C3H6O2, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Application In Synthesis of 7748-36-9

Baum, Kurt;Berkowitz, Phillip T.;Grakauskas, Vytautas;Archibald, Thomas G. research published 《 Synthesis of electron-deficient oxetanes. 3-Azidooxetane, 3-nitrooxetane, and 3,3-dinitrooxetane》, the research content is summarized as follows. Oxetane I (R = OH, R1 = H) was prepared by addition of HOAc to epichlorohydrin, protection of the resulting alc. as an acetal, hydrolysis, ring closure, and removal of the protecting group. I (R = N3, R1 = H) was prepared from I (R = 4-MeC6H4SO3, R1 = H) and NaN3. Reduction of the azide with Ph3P or H gave I (R = NH2, R1 = H), and oxidation of the amine with 3-ClC6H4C(O)OOH gave I (R = NO2, R1 = H). Oxidative nitration or reaction with C(NO2)4 gave I (R = R1 = NO2). I (R = N3, R1 = H; R = R1 = NO2) were polymerized with Lewis acids.

Application In Synthesis of 7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., 7748-36-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Batista, Mateus Alves team published research on Molecules in 2022 | 24034-73-9

Related Products of 24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, 24034-73-9.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 24034-73-9, formula is C20H34O, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Related Products of 24034-73-9

Batista, Mateus Alves;de Lima Teixeira dos Santos, Abrahao Victor Tavares;do Nascimento, Aline Lopes;Moreira, Luiz Fernando;Souza, Indira Ramos Senna;da Silva, Heitor Ribeiro;Pereira, Arlindo Cesar Matias;da Silva Hage-Melim, Lorane Izabel;Carvalho, Jose Carlos Tavares research published 《 Potential of the Compounds from Bixa orellana Purified Annatto Oil and Its Granules (Chronic) against Dyslipidemia and Inflammatory Diseases: In Silico Studies with Geranylgeraniol and Tocotrienols》, the research content is summarized as follows. Some significant compounds present in annatto are geranylgeraniol and tocotrienols. These compounds have beneficial effects against hyperlipidemia and chronic diseases, where oxidative stress and inflammation are present, but the exact mechanism of action of such activities is still a subject of research. This study aimed to evaluate possible mechanisms of action that could be underlying the activities of these mols. For this, in silico approaches such as ligand topol. (PASS and SEA servers) and mol. docking with the software GOLD were used. Addnl., we screened some pharmacokinetic and toxicol. parameters using the servers PreADMET, SwissADME, and ProTox-II. The results corroborate the antidyslipidemia and anti-inflammatory activities of geranylgeraniol and tocotrienols. Notably, some new mechanisms of action were predicted to be potentially underlying the activities of these compounds, including inhibition of squalene monooxygenase, lanosterol synthase, and phospholipase A2. These results give new insight into new mechanisms of action involved in these mols. from annatto and Chronic.

Related Products of 24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, 24034-73-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Basting, Rosanna Tarkany team published research on Natural Product Research in 2021 | 24034-73-9

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Safety of (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 24034-73-9, formula is C20H34O, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Safety of (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol

Basting, Rosanna Tarkany;de Abreu, Pedro Manoel Barreto;Sousa, Ilza Maria de Oliveira;de Carvalho, Joao Ernesto;Carvalho, Paulo Roberto Nogueira;Foglio, Mary Ann research published 《 Bixa orellana L. by-products’ fractions from an industrial process: antiproliferative activity on tumor cells and chemical profile》, the research content is summarized as follows. This study evaluated the phytochem. characterization of Bixa orellana (BO extract) unsaponifiable extract and resulting fractions (F fraction – FF, Geranyl fraction – GF and R fraction- RF) obtained as byproducts of an industrial process investigating in vitro antiproliferative activities in human tumoral cells. The main compounds identified by GC-MS for BO extract were Geranylgeraniol (61.51%); for FF: Geranylgeraniol (70.23%); for GF: Geranylgeraniol (78.92%) and for RF: β-cubebene (27.75%). Quantifications of geranylgeraniol by GC-FID presented the percentage content: BO 27.52%; FF 38.52%; GF 51.44% and RF 1.81%. BO extract showed a significant antiproliferative activity, with GI50 up to 4μg/mL. All fractions had a remarkably similar antiproliferative activity profile (GI50 27-47μg/mL). Data reported herein showed an important cytostatic effect for BO extract, nevertheless this activity is not attributed exclusively to geranylgeraniol. In conclusion, this byproduct becomes of great value, being a potential candidate for development of new anti-tumor ingredients.

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Safety of (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Barre, Baptiste team published research on Organic Letters in 2014 | 141699-55-0

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Category: alcohols-buliding-blocks

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 141699-55-0, formula is C8H15NO3, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Category: alcohols-buliding-blocks

Barre, Baptiste;Gonnard, Laurine;Campagne, Remy;Reymond, Sebastien;Marin, Julien;Ciapetti, Paola;Brellier, Marie;Guerinot, Amandine;Cossy, Janine research published 《 Iron- and Cobalt-Catalyzed Arylation of Azetidines, Pyrrolidines, and Piperidines with Grignard Reagents》, the research content is summarized as follows. Iron- and cobalt-catalyzed cross-couplings between iodo-azetidines, -pyrrolidines, -piperidines, and Grignard reagents are disclosed. The reaction is efficient, cheap, chemoselective and tolerates a large variety of (hetero)aryl Grignard reagents.

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Barnych, Bogdan team published research on European Journal of Medicinal Chemistry in 2020 | 7748-36-9

HPLC of Formula: 7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., 7748-36-9.

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 7748-36-9, formula is C3H6O2, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. HPLC of Formula: 7748-36-9

Barnych, Bogdan;Singh, Nalin;Negrel, Sophie;Zhang, Yue;Magis, Damien;Roux, Capucine;Hua, Xiude;Ding, Zhewen;Morisseau, Christophe;Tantillo, Dean J.;Siegel, Justin B.;Hammock, Bruce D. research published 《 Development of potent inhibitors of the human microsomal epoxide hydrolase》, the research content is summarized as follows. Microsomal epoxide hydrolase (mEH) hydrolyzes a wide range of epoxide containing mols. Although involved in the metabolism of xenobiotics, recent studies associate mEH with the onset and development of certain disease conditions. This phenomenon is partially attributed to the significant role mEH plays in hydrolyzing endogenous lipid mediators, suggesting more complex and extensive physiol. functions. In order to obtain pharmacol. tools to further study the biol. and therapeutic potential of this enzyme target, we describe the development of highly potent 2-alkylthio acetamide inhibitors of the human mEH with IC50 values in the low nanomolar range. These are around 2 orders of magnitude more potent than previously obtained primary amine, amide and urea-based mEH inhibitors. Exptl. assay results and rationalization of binding through docking calculations of inhibitors to a mEH homol. model indicate that an amide connected to an alkyl side chain and a benzyl-thio function as key pharmacophore units.

HPLC of Formula: 7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., 7748-36-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Barman, Monica team published research on Industrial Crops and Products in 2022 | 24034-73-9

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Synthetic Route of 24034-73-9

Synthetic Route of 24034-73-9, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 24034-73-9, name is (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.

Barman, Monica;Soren, Monika;Mishra, Chinmaya;Mitra, Adinpunya research published 《 Dehydrated jasmine flowers obtained through natural convective solar drying retain scent volatiles and phenolics – A prospective for added-value utility》, the research content is summarized as follows. Although season-specific, Jasminum spp. are cultivated com. for their sweet-scented flowers and their postharvest utility in various value-added products. However, to ensure year-round availability of quality floral biomass, jasmines are to be dehydrated and stored. In the present study, we attempted to dehydrate fresh jasmine flowers using a custom-made natural convective solar drying and compared the outcome with four widely used drying methods namely, sun drying, shade drying, oven drying and freeze drying. Subsequently, the retention capacities of scent volatiles and phenolics in dehydrated flowers of Jasminum auriculatum and J. sambac were compared. Total phenolic contents (TPC) were found to be high in both freeze dried and natural convective dried samples whereas the antioxidant capacity was high in natural convective dried samples. Phenolic acids viz. protocatechuic acid, vanillic acid, and caffeic acid were detected; these phenolic acids were shown to retain in higher amount in natural convective dried samples. Further, freeze and convective-dried flowers were also shown to retain maximum contents of scent volatiles. These observations suggest that custom-made low-cost natural convective solar dryer could be explored at large scale to obtain good quality dried flowers of Jasminum spp. for added-value utility.

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Synthetic Route of 24034-73-9

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Barlaam, Bernard team published research on Bioorganic & Medicinal Chemistry Letters in 2020 | 141699-55-0

Safety of tert-Butyl 3-hydroxyazetidine-1-carboxylate, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 141699-55-0, formula is C8H15NO3, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Safety of tert-Butyl 3-hydroxyazetidine-1-carboxylate

Barlaam, Bernard;Boiko, Scott;Boyd, Scott;Dry, Hannah;Gingipalli, Lakshmaiah;Ikeda, Timothy;Johnson, Tony;Kawatkar, Sameer;Lorthioir, Olivier;Pike, Andy;Pollard, Hannah;Read, Jon;Su, Qibin;Wang, Haiyun;Wang, Huimin;Wang, Lianghe;Wang, Peng;Edmondson, Scott D. research published 《 Novel potent and selective pyrazolylpyrimidine-based SYK inhibitors》, the research content is summarized as follows. Hybridization of amino-pyrimidine based SYK inhibitors (e.g. 1a) with previously reported diamine-based SYK inhibitors (e.g. TAK-659) led to the identification and optimization of a novel pyrimidine-based series of potent and selective SYK inhibitors, where the original aminomethylene group was replaced by a 3,4-diaminotetrahydropyran group. The initial compound 5 achieved excellent SYK potency. However, it suffered from poor permeability and modest kinase selectivity. Further modifications of the 3,4-diaminotetrahydropyran group were identified and the interactions of those groups with Asp512 were characterised by protein X-ray crystallog. Further optimization of this series saw mixed results where permeability and kinase selectivity were increased and oral bioavailability was achieved in the series, but at the expense of potent hERG inhibition.

Safety of tert-Butyl 3-hydroxyazetidine-1-carboxylate, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts