Dong, Zhe team published research on Nature (London, United Kingdom) in 2021 | 16545-68-9

16545-68-9, Cyclopropanol is a cyclopropane in which a hydrogen atom is replaced by a hydroxy group. It is a member of cyclopropanes and an aliphatic alcohol.
Cyclopropanol is a useful research compound. Its molecular formula is C3H6O and its molecular weight is 58.08 g/mol. The purity is usually 95%.
Cyclopropanol is a cyclic organic compound that is synthesized from sodium hydroxide solution, nitrogen atoms, and carbonyl groups. Cyclopropanol has shown inhibitory effects on inflammatory bowel disease in rats. This drug also inhibits the production of hydrogen chloride and hydrochloric acid in the stomach, which can lead to ulcers. Cyclopropanol has been found to be effective against bowel diseases such as Crohn’s disease and ulcerative colitis. This drug has been shown to have strong antioxidant properties, which may be due to its ability to reduce hydroxyl radicals., Formula: C3H6O

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 16545-68-9, formula is C3H6O, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Formula: C3H6O

Dong, Zhe;MacMillan, David W. C. research published 《 Metallaphotoredox-enabled deoxygenative arylation of alcohols》, the research content is summarized as follows. Metal-catalyzed cross-couplings are a mainstay of organic synthesis and are widely used for the formation of C-C bonds, particularly in the production of unsaturated scaffolds1. However, alkyl cross-couplings using native sp3-hybridized functional groups such as alcs. remain relatively underdeveloped2. In particular, a robust and general method for the direct deoxygenative coupling of alcs. would have major implications for the field of organic synthesis. A general method for the direct deoxygenative cross-coupling of free alcs. must overcome several challenges, most notably the in situ cleavage of strong C-O bonds3, but would allow access to the vast collection of com. available, structurally diverse alcs. as coupling partners4. Authors report herein a metallaphotoredox-based cross-coupling platform in which free alcs. are activated in situ by N-heterocyclic carbene salts for carbon-carbon bond formation with aryl halide coupling partners. This method is mild, robust, selective and most importantly, capable of accommodating a wide range of primary, secondary and tertiary alcs. as well as pharmaceutically relevant aryl and heteroaryl bromides and chlorides. The power of the transformation has been demonstrated in a number of complex settings, including the late-stage functionalization of Taxol and a modular synthesis of Januvia, an antidiabetic medication. This technol. represents a general strategy for the merger of in situ alc. activation with transition metal catalysis.

16545-68-9, Cyclopropanol is a cyclopropane in which a hydrogen atom is replaced by a hydroxy group. It is a member of cyclopropanes and an aliphatic alcohol.
Cyclopropanol is a useful research compound. Its molecular formula is C3H6O and its molecular weight is 58.08 g/mol. The purity is usually 95%.
Cyclopropanol is a cyclic organic compound that is synthesized from sodium hydroxide solution, nitrogen atoms, and carbonyl groups. Cyclopropanol has shown inhibitory effects on inflammatory bowel disease in rats. This drug also inhibits the production of hydrogen chloride and hydrochloric acid in the stomach, which can lead to ulcers. Cyclopropanol has been found to be effective against bowel diseases such as Crohn’s disease and ulcerative colitis. This drug has been shown to have strong antioxidant properties, which may be due to its ability to reduce hydroxyl radicals., Formula: C3H6O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Dong, Zhe team published research on Nature (London, United Kingdom) in 2021 | 141699-55-0

Computed Properties of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 141699-55-0, formula is C8H15NO3, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Computed Properties of 141699-55-0

Dong, Zhe;MacMillan, David W. C. research published 《 Metallaphotoredox-enabled deoxygenative arylation of alcohols》, the research content is summarized as follows. Metal-catalyzed cross-couplings are a mainstay of organic synthesis and are widely used for the formation of C-C bonds, particularly in the production of unsaturated scaffolds1. However, alkyl cross-couplings using native sp3-hybridized functional groups such as alcs. remain relatively underdeveloped2. In particular, a robust and general method for the direct deoxygenative coupling of alcs. would have major implications for the field of organic synthesis. A general method for the direct deoxygenative cross-coupling of free alcs. must overcome several challenges, most notably the in situ cleavage of strong C-O bonds3, but would allow access to the vast collection of com. available, structurally diverse alcs. as coupling partners4. Authors report herein a metallaphotoredox-based cross-coupling platform in which free alcs. are activated in situ by N-heterocyclic carbene salts for carbon-carbon bond formation with aryl halide coupling partners. This method is mild, robust, selective and most importantly, capable of accommodating a wide range of primary, secondary and tertiary alcs. as well as pharmaceutically relevant aryl and heteroaryl bromides and chlorides. The power of the transformation has been demonstrated in a number of complex settings, including the late-stage functionalization of Taxol and a modular synthesis of Januvia, an antidiabetic medication. This technol. represents a general strategy for the merger of in situ alc. activation with transition metal catalysis.

Computed Properties of 141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., 141699-55-0.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Dong, Jiaqiang team published research on ACS Medicinal Chemistry Letters in 2020 | 16545-68-9

Recommanded Product: Cyclopropanol, Cyclopropanol is a cyclopropane in which a hydrogen atom is replaced by a hydroxy group. It is a member of cyclopropanes and an aliphatic alcohol.
Cyclopropanol is a useful research compound. Its molecular formula is C3H6O and its molecular weight is 58.08 g/mol. The purity is usually 95%.
Cyclopropanol is a cyclic organic compound that is synthesized from sodium hydroxide solution, nitrogen atoms, and carbonyl groups. Cyclopropanol has shown inhibitory effects on inflammatory bowel disease in rats. This drug also inhibits the production of hydrogen chloride and hydrochloric acid in the stomach, which can lead to ulcers. Cyclopropanol has been found to be effective against bowel diseases such as Crohn’s disease and ulcerative colitis. This drug has been shown to have strong antioxidant properties, which may be due to its ability to reduce hydroxyl radicals., 16545-68-9.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 16545-68-9, formula is C3H6O, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Recommanded Product: Cyclopropanol

Dong, Jiaqiang;Huang, Jingjie;Zhou, Ji;Tan, Ye;Jin, Jing;Tan, Xi;Wang, Bei;Yu, Tao;Wu, Chengde;Chen, Shuhui;Wang, Tie-Lin research published 《 Discovery of 3-Quinazolin-4(3H)-on-3-yl-2,N-dimethylpropanamides as Orally Active and Selective PI3Kα Inhibitors》, the research content is summarized as follows. Phosphoinositide 3-kinases (PI3Ks) mediate a series of events related to cell growth, proliferation, survival, and differentiation. Overexpression of PI3Ks can lead to the dysregulation of cell homeostasis and cause tumorigenesis. In this study, rationally designed compounds were investigated as PI3Kα-selective inhibitors. Our efforts culminated in the discovery of a series of quinazolin-4(3H)-one derivatives with 2-substituted-N-methylpropanamide substitutions as PI3Kα-selective inhibitors. The best compound, I, has PI3Kα enzymic and cellular IC50 values of 1.8 and 12.1 nM, resp. It exhibits biochem. selectivities for PI3Kα over PI3Kβ/δ/γ of 150/7.72/7.67-fold and cellular selectivities of 115/15.1/>826-fold, resp. Compound I is 59% orally bioavailable with a dose-normalized AUC of 3090 nM. These effects translated into in vivo conditions, as I significantly time- and dose-dependently inhibited phosphorylation of Akt in BT-474 s.c. xenograft mice and inhibited tumor growth.

Recommanded Product: Cyclopropanol, Cyclopropanol is a cyclopropane in which a hydrogen atom is replaced by a hydroxy group. It is a member of cyclopropanes and an aliphatic alcohol.
Cyclopropanol is a useful research compound. Its molecular formula is C3H6O and its molecular weight is 58.08 g/mol. The purity is usually 95%.
Cyclopropanol is a cyclic organic compound that is synthesized from sodium hydroxide solution, nitrogen atoms, and carbonyl groups. Cyclopropanol has shown inhibitory effects on inflammatory bowel disease in rats. This drug also inhibits the production of hydrogen chloride and hydrochloric acid in the stomach, which can lead to ulcers. Cyclopropanol has been found to be effective against bowel diseases such as Crohn’s disease and ulcerative colitis. This drug has been shown to have strong antioxidant properties, which may be due to its ability to reduce hydroxyl radicals., 16545-68-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Dong, Hua team published research on Journal of Biotechnology in 2020 | 24034-73-9

Recommanded Product: (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, 24034-73-9.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 24034-73-9, formula is C20H34O, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Recommanded Product: (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol

Dong, Hua;Chen, Shan;Zhu, Jianxun;Gao, Ke;Zha, Wenlong;Lin, Pengcheng;Zi, Jiachen research published 《 Enhance production of diterpenoids in yeast by overexpression of the fused enzyme of ERG20 and its mutant mERG20》, the research content is summarized as follows. Yeast has been widely used for large-scale production of terpenoids. In yeast, modifications of terpenoid biosynthetic pathways have been intensively studied. tHMG1 (encoding the catalytic domain of 3-hydroxy-3-methylglutaryl CoA reductase of yeast) and UPC2-1 (the G888D mutant of UPC2 encoding a transcription factor) were integrated into yeast chromosome, and ERG9 (the squalene synthase gene of yeast) was knocked down to yield the chassis strain DH02. A F96C mutation in ERG20 (farnesyl diphosphate synthase of yeast) was conducted to obtain mERG20 which can function as a geranylgeranyl diphosphate synthase (GGPS). Then, three fused genes, including BTS1 (the yeast innate GGPS)-ERG20, ERG20-mERG20 and mERG20-ERG20, were constructed, and expressed either by the pESC-based plasmids in DH02, or by being integrated into DH02 chromosome. The highest geranylgeraniol (GGOH) content was observed in the extracts of DH12 integrated with ERG20-mERG20, corresponding to 3.2 and 2.3 folds of those of the strains integrated with BTS1 and mERG20, resp. Finally, three genes encoding nor-copalyl diphosphate synthase (nor-CPS), ent-CPS and syn-CPS were integrated into the chromosome of DH12, resp., to construct yeasts for producing corresponding copalyl diphosphates (CPPs). Thus, a yeast-based platform was built for characterizing all types of diterpene synthases using GGPP or various CPPs as their substrates.

Recommanded Product: (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, 24034-73-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Dominik, Wust team published research on Waste and Biomass Valorization in 2022 | 533-73-3

533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., Name: Benzene-1,2,4-triol

In general, the hydroxyl group makes alcohols polar. 533-73-3, formula is C6H6O3, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Name: Benzene-1,2,4-triol

Dominik, Wust;Pablo, Arauzo;Sonja, Habicht;Fernando, Cazana;Luca, Fiori;Andrea, Kruse research published 《 Process Water Recirculation During Hydrothermal Carbonization as a Promising Process Step Towards the Production of Nitrogen-Doped Carbonaceous Materials》, the research content is summarized as follows. Hydrothermal Carbonization (HTC) refers to the conversion of biogenic wastes into char-like solids with promising perspectives for application, but a process water (PW) results which is difficult to dispose untreated. Thus, a biorefinery approach including one or two recirculation steps with the addnl. objective of improving the physico-chem. characteristics of the solid was performed in this study. During HTC, constitutive mols. such as saccharides, proteins and lignin of Brewer’s Spent Grains decompose into hundreds of organic compounds, following complex reactions. To get deeper insights a combination of proximate, ultimate and structural anal. for solid products as well as liquid chromatog. for liquid products were the choice. The main reactions could be identified by key compounds of low and high mol. weight resulting from hydrolysis, dehydration, decarboxylation, deamination as well as amide formation and condensation reactions. Their intensity was influenced by the feedwater pH and reaction temperature Via reactions of Maillard character up to around 90% of the dissolved nitrogen of the recirculated process water at 200, 220 and 240°C result in the formation of nitrogen containing heterocycles or rather Quartnernary nitrogen incorporated into the hydrochar (HC). Thus, already one recirculation step during HTC at 240°C promises the fabrication of high added-value materials, i.e. nitrogen doped carbonaceous materials.

533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., Name: Benzene-1,2,4-triol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Dolatabadi, Maryam team published research on Science of the Total Environment in 2021 | 533-73-3

Synthetic Route of 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 533-73-3, formula is C6H6O3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Synthetic Route of 533-73-3

Dolatabadi, Maryam;Swiergosz, Tomasz;Ahmadzadeh, Saeid research published 《 Electro-Fenton approach in oxidative degradation of dimethyl phthalate – The treatment of aqueous leachate from landfills》, the research content is summarized as follows. Herein, the di-Me phthalate (DMP) contamination, as an emerging pollutant, has been cost-effectively removed from landfill leachate through an advanced oxidation process, that is the electro-Fenton (EF) process. For this purpose, a quadratic polynomial model was developed via response surface methodol. (RSM). Furthermore, the anal. of variance (ANOVA) was performed for evaluating the significance of the proposed assumptions. The actual removal rate of 99.1% was obtained with optimal values of 4 mg L-1 of initial DMP concentration, 50 mM Na2SO4, 600μL L-1 H2O2, 8-min electrolytic time, solution pH 3 and 6 mA cm-2 c.d. for the process variables and was consistent with the expected 99.6% removal rate. Satisfactory correlation coefficients were obtained, and a non-significant value of 0.0618 for model mismatch confirmed that the proposed model is extremely important and can successfully predict the effectiveness of DMP removal. The kinetics of the process and the effect of the presence of some radical scavengers were studied to understand the exact mechanism of DMP degradation Therefore, it was observed that the reaction of hydroxyl radicals with DMPs followed the first-order kinetics model. Moreover, it was established that the optimal ratio of H2O2/Fe2+ mole was 1.6 and the electricity consumption was 0.157 kWh m-3. The elaborated treatment model used to remove DMP from landfill leachate showed that DMP contamination was effectively removed with a 95.6% removal efficiency in the investigating process.

Synthetic Route of 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Djebari, Sabrina team published research on Food Control in 2021 | 533-73-3

Related Products of 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 533-73-3, formula is C6H6O3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Related Products of 533-73-3

Djebari, Sabrina;Wrona, Magdalena;Boudria, Asma;Salafranca, Jesus;Nerin, Cristina;Bedjaoui, Kenza;Madani, Khodir research published 《 Study of bioactive volatile compounds from different parts of Pistacia lentiscus L. extracts and their antioxidant and antibacterial activities for new active packaging application》, the research content is summarized as follows. Macerates of fruits and leaves of Pistacia lentiscus L. were prepared and analyzed with the aim of applying them for active packaging. The profile of forty-four different bioactive volatile compounds was obtained by means of gas chromatog.-mass spectrometry and solid-phase microextraction gas chromatog.-mass spectrometry. Antioxidant capacity was evaluated by three different methods (2,2-diphenyl-1-picrylhydrazyl, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid and reducing power) which confirmed stronger antioxidant properties in case of leaves macerate. Total phenolic and flavonoids content was determined and showed that macerate leaves presented 15 times more phenolic compounds and 20 times more flavonoids than macerate fruit. Moreover, the anal. of antimicrobial properties of macerate leaves in comparison with macerate fruits revealed very strong antimicrobial properties. Finally, macerate leaves extract was incorporated in an adhesive and a new active multilayer packaging was designed, and its antioxidant capacity as free radical scavenger was confirmed by a method based on in situ hydroxyl radicals generator.

Related Products of 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Di, You-Ying team published research on Journal of Molecular Structure in 2021 | 527-07-1

Synthetic Route of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Synthetic Route of 527-07-1, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 527-07-1, name is Sodium Gluconate, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.

Di, You-Ying;Zhang, Guo-Chun;Liu, Yu-Pu;Kong, Yu-Xia;Zhou, Chun-Sheng research published 《 Crystal structure and thermodynamic properties of the coordination compound calcium D-gluconate Ca[D-C6H11O7]2(s)》, the research content is summarized as follows. The coordination compound calcium D-gluconate, Ca[D-C6H11O7]2(s), was synthesized and characterized by chem. anal., elemental anal., and x-ray crystallog. Single crystal x-ray diffraction technique revealed that the compound was formed by two D-gluconate anions and one calcium(II) cation. And the D-gluconate anion had a curved chain configuration with an intramol. bond. The compound exhibited an outstanding chelate property of D-gluconate anions to calcium(II) cations, and the calcium(II) cation was eight-coordinated and chelated by four D-gluconate anions. The lattice potential energy and ionic volume of the anion were calculated to be 1434.05 kJ·mol-1 and 0.4211 nm3 from crystallog. data. In accordance with famous Hess law, a reasonable thermochem. cycle was designed and the standard molar enthalpy of formation of Ca[D-C6H11O7]2(s) was calculated as ΔsHm[Ca[D-C6H11O7]2, s] = -(3545.19 ± 1.07) kJ·mol-1 by use of an isoperibol solution-reaction calorimeter. Furthermore, molar heat capacities of the compound were measured using a Quantum Design Phys. Properties Measurement System (PPMS) with sp. heat option within the temperature range from (1.9-300) K. The heat capacities of the compound increased with the temperature and no thermal anomaly was found in the whole temperature region. The exptl. data was fitted to a function of the absolute temperature T with a series of theor. and empirical models for the proper temperature ranges. The values of standard thermodn. function, Cop,m/J·K-1·mol-1, ΔT0Hom/kJ·mol-1, ΔT0Som/J·K-1·mol-1, and ΔToGom/T/J·K-1·mol-1 (=ΔT0SomT0Hom/T) from T = (0-300) K was calculated based on the fitting results. The standard molar heat capacity, entropy and enthalpy of the compound at T = 298.15 K and 0.1 MPa was determined to be Cop,m= (493.20 ± 2.70) J·K-1 mol-1, Hom= (75934 ± 805) J·mol-1, Som= (471.55 ± 2.78) J·K-1 mol-1, and Gom/T = – (64658 ± 808) J·K-1·mol-1, resp.

Synthetic Route of 527-07-1, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Di Serio, Maria Gabriella team published research on Journal of the Science of Food and Agriculture in 2021 | 24034-73-9

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Name: (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol

In general, the hydroxyl group makes alcohols polar. 24034-73-9, formula is C20H34O, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Name: (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol

Di Serio, Maria Gabriella;Giansante, Lucia;Del Re, Paolo;Pollastri, Luciano;Panni, Filippo;Valli, Enrico;Di Giacinto, Luciana research published 《 Characterization of Olivastro di Bucchianico cv extra virgin olive oils and its recognition by HS-GC-IMS》, the research content is summarized as follows. Single cultivar Olivastro di Bucchianico extra virgin olive oil is obtained from olives cultivated in a narrow area of the Abruzzo region, Italy. This cultivar is mostly present in the municipality of Bucchianico and in some neighboring municipalities in the province of Chieti. There is very little research in the literature describing the morphol. and chem. characteristics of this cultivar. A morphol. characterization of the plant and the fruit was carried out. In addition, we characterized the chem., phys.-chem. and sensory properties of the extra virgin olive oil. The following analyses were conducted: free acidity, peroxide value, UV spectrophotometric indexes, contents in fatty acid Et esters, waxes, tocopherols, fatty acids, triglycerides, sterols, alcs., phenolic substances, volatile compounds and sensory profile. The anal. of the volatile compounds was performed using a headspace-gas chromatog.-ion mobility spectrometry (HS-GC-IMS) instrument connected to a nitrogen generator for carrier/drift gas production The results of the chem. analyses showed good levels of nutraceutical components in the oils, which were found to be organoleptically well balanced with medium values of fruity, bitter and pungent. The HS-GC-IMS method based on the anal. of 15 volatile mols. might be a useful tool for a chemometric discrimination of the varietal origin for the oils under investigation. 2021 Society of Chem. Industry

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Name: (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Dhamodharan, Duraisami team published research on New Journal of Chemistry in 2022 | 647-42-7

Category: alcohols-buliding-blocks, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., 647-42-7.

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 647-42-7, formula is C8H5F13O, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Category: alcohols-buliding-blocks

Dhamodharan, Duraisami;Ghoderao, Pradnya NP;Park, Cheol-Woong;Byun, Hun-Soo research published 《 Bubble and dew-point measurement of mixtures of 1H,1H,2H-perfluoro-1-octene and 1H,1H,2H,2H-perfluoro-1-octanol in supercritical CO2》, the research content is summarized as follows. In this article, solubility data are presented for the fluoro-monomer (meth)acrylate, which plays an important role as an organic solvent in several industrial processes. High-pressure phase equilibrium for 1H,1H,2H-perfluoro-1-octene + supercritical CO2 (PFOe + Sc-CO2), and 1H,1H,2H,2H-perfluoro-1-octanol + Sc-CO2 (PFOl + Sc-CO2) models were assessed in a static device at different temperatures starting from 313.2 to 393.2 K and maximum pressure of about 17.22 MPa. Temperature-pressure (T-p) diagrams of the PFOe + Sc-CO2 and PFOl + Sc-CO2 systems show mixture-critical curves between the critical temperatures of CO2 and PFOe or CO2 and PFOl. The solubility of PFOe and PFOl in the two systems gradually increases with increasing temperature at constant pressure. The exptl. curves for the PFOe + Sc-CO2 and PFOl + Sc-CO2 binary models show phase behavior of curve type-I. Correlations of exptl. results for the PFOe + Sc-CO2 and PFOl + Sc-CO2 models are compared with the P-R EOS using mixing rules with two parameters (κij, ηij). The root mean squared deviation (RMSD) percentages (%) for the two systems using the optimum factors evaluated at 353.2 K were 2.19% for PFOl + Sc-CO2 and 5.30% for PFOe + Sc-CO2. The RMSD (%) for the PFOl + Sc-CO2 model evaluated by the alterable factor at each temperature was 2.78%.

Category: alcohols-buliding-blocks, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., 647-42-7.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts