Duncton, Matthew A. J. team published research on Organic Letters in 2008 | 7748-36-9

7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., Product Details of C3H6O2

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 7748-36-9, formula is C3H6O2, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Product Details of C3H6O2

Duncton, Matthew A. J.;Estiarte, M. Angels;Tan, Darlene;Kaub, Carl;O’Mahony, Donogh J. R.;Johnson, Russell J.;Cox, Matthew;Edwards, William T.;Wan, Min;Kincaid, John;Kelly, Michael G. research published 《 Preparation of Aryloxetanes and Arylazetidines by Use of an Alkyl-Aryl Suzuki Coupling》, the research content is summarized as follows. The oxetan-3-yl and azetidin-3-yl substituents have previously been identified as privileged motifs within medicinal chem. An efficient approach to installing these two modules into aromatic systems, using a nickel-mediated alkyl-aryl Suzuki coupling, is presented.

7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., Product Details of C3H6O2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Dumas, Adrien team published research on ACS Omega in 2020 | 7748-36-9

7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., Product Details of C3H6O2

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 7748-36-9, formula is C3H6O2, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Product Details of C3H6O2

Dumas, Adrien;Garsi, Jean-Baptiste;Poissonnet, Guillaume;Hanessian, Stephen research published 《 Ni-Catalyzed Reductive and Merged Photocatalytic Cross-Coupling Reactions toward sp3/sp2-Functionalized Isoquinolones: Creating Diversity at C-6 and C-7 to Address Bioactive Analogues》, the research content is summarized as follows. Naturally occurring isoquinolones have gained considerable attention over the years for their bioactive properties. While the late-stage introduction of various functionalities at certain positions, namely, C-3, C-4, and C-8, has been widely documented, the straightforward introduction of challenging sp3 carbon-linked acyclic aminoalkyl or aza- and oxacyclic appendages at C-6 and C-7 remains largely underexplored. Interest in 6-substituted azacyclic analogs has recently garnered attention in connection with derivatives exhibiting anticancer activity. Reported here is the first application of the versatile and recently emerging field of Ni-catalyzed reductive cross-coupling reactions to the synthesis of 6- and 7- hetero(cyclo)alkyl-substituted isoquinolones. In a second and complementary approach, a new set of C-6- and C-7-substituted positional isomers of hetero(cyclo)alkyl appendages were obtained from the merging of photocatalytic and Ni-catalyzed coupling reactions. In both cases, 6- and 7-bromo isoquinolones served as dual-purpose reacting partners with readily available tosylates and carboxylic acids, resp.

7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., Product Details of C3H6O2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Duan, Yonghua team published research on Journal of Materials Research in 2021 | 533-73-3

COA of Formula: C6H6O3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 533-73-3, formula is C6H6O3, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. COA of Formula: C6H6O3

Duan, Yonghua;Gou, Ming-Lei;Guo, Yafei;Cai, Junqing;Song, Wensheng;Liu, Zhen;Zhou, Erpeng research published 《 In situ hydrothermal synthesis of TiO2-RGO nanocomposites for 4-nitrophenol degradation under sunlight irradiation》, the research content is summarized as follows. Different amounts (0, 1.0, 3.0, 5.0 and 10.0 wt%) of reduced graphene oxide (RGO) were successfully immobilized to the surface of TiO2 nanoparticles through a hydrothermal process. With addition of RGO, the particle size decreased and the surface area and pore volume increased, resulting in improvement of the reactants′ diffusion and contact area. RGO could be hybridized with titanium atoms, leading to decreasing of the gap energy of TiO2 and more efficient utilization of the solar energy. Hence, the photocatalytic activity of TiO2-RGO composites for 4-nitrophenol degradation was improved accordingly. However, excess amount of RGO (≥ 10.0 wt%) brought about easier recombination of photoelectrons and holes, causing a lower quantum efficiency and photocatalytic activity. The ·OH radicals were the main active species during the degradation process, but the involvement of ·O2– radicals could not be neglected. The pathways for mineralizing of 4-nitrophenol over TiO2-RGO composites under sunlight irradiation were also proposed.

COA of Formula: C6H6O3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Duan, Sheng-Guang team published research on Phytochemistry (Elsevier) in 2021 | 533-73-3

Recommanded Product: Benzene-1,2,4-triol, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

In general, the hydroxyl group makes alcohols polar. 533-73-3, formula is C6H6O3, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Recommanded Product: Benzene-1,2,4-triol

Duan, Sheng-Guang;Hong, Kun;Tang, Ming;Tang, Jing;Liu, Lun-Xian;Gao, Gui-Feng;Shen, Zhi-Jun;Zhang, Xi-Min;Yi, Yin research published 《 Untargeted metabolite profiling of petal blight in field-grown Rhododendron agastum using GC-TOF-MS and UHPLC-QTOF-MS/MS》, the research content is summarized as follows. We used untargeted gas chromatog. time-of-flight mass spectrometry (GC-TOF-MS) and ultra-high performance liquid chromatog. quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS) to compare the metabolite profiles of healthy and petal blight R. agastum flowers. Using GC-TOF-MS, 571 peaks were extracted, of which 189 metabolites were tentatively identified. On the other hand, 364 and 277 metabolites were tentatively identified in the pos. and neg. ionization modes of the UHPLC-QTOF-MS/MS, resp. Principal component anal. (PCA) and orthogonal projections to latent structures-discriminant anal. (OPLS-DA) were able to clearly discriminate between healthy and petal blight flowers. Differentially abundant metabolites were primarily enriched in the biosynthesis of specialized metabolites. 17 accumulated specialized metabolites in petal blight flowers have been reported to have antifungal activity, and literature indicates that 9 of them are unique to plants. 3 metabolites (chlorogenic acid, medicarpin, and apigenin) are reportedly involved in resistance to blight caused by pathogens. We therefore speculate that the accumulation of chlorogenic acid, medicarpin, and apigenin may be involved in the resistance to petal blight. Our results suggest that these metabolites may be used as candidate biocontrol agents for the control fungal petal blight in Rhododendron.

Recommanded Product: Benzene-1,2,4-triol, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Du, Yimeng team published research on Chemical Science in 2021 | 72824-04-5

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Quality Control of 72824-04-5

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 72824-04-5, formula is C9H17BO2, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Quality Control of 72824-04-5

Du, Yimeng;Zhang, Yuqing;Huang, Meirong;Wang, Shushu;Wang, Jianzheng;Liao, Kongke;Wu, Xiaojun;Zhou, Qiang;Zhang, Xinhao;Wu, Yun-Dong;Peng, Tao research published 《 Systematic investigation of the aza-Cope reaction for fluorescence imaging of formaldehyde in vitro and in vivo》, the research content is summarized as follows. Increasing evidence has highlighted the endogenous production of formaldehyde (FA) in a variety of fundamental biol. processes and its involvement in many disease conditions ranging from cancer to neurodegeneration. To examine the physiol. and pathol. relevance and functions of FA, fluorescent probes for FA imaging in live biol. samples are of great significance. Herein we report a systematic investigation of 2-aza-Cope reactions between homoallylamines and FA for identification of a highly efficient 2-aza-Cope reaction moiety and development of fluorescent probes for imaging FA in living systems. By screening a set of N-substituted homoallylamines and comparing them to previously reported homoallylamine structures for reaction with FA, we found that N-p-methoxybenzyl homoallylamine exhibited an optimal 2-aza-Cope reactivity to FA. Theor. calculations were then performed to demonstrate that the N-substituent on homoallylamine greatly affects the condensation with FA, which is more likely the rate-determining step. Moreover, the newly identified optimal N-p-methoxybenzyl homoallylamine moiety with a self-immolative β-elimination linker was generally utilized to construct a series of fluorescent probes with varying excitation/emission wavelengths for sensitive and selective detection of FA in aqueous solutions and live cells. Among these probes, the near-IR probe FFP706 has been well demonstrated to enable direct fluorescence visualization of steady-state endogenous FA in live mouse brain tissues and elevated FA levels in a mouse model of breast cancer. This study provides the optimal aza-Cope reaction moiety for FA probe development and new chem. tools for fluorescence imaging and biol. investigation of FA in living systems.

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Quality Control of 72824-04-5

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Du, Chunyan team published research on Records of Natural Products in 2021 | 24034-73-9

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Electric Literature of 24034-73-9

In general, the hydroxyl group makes alcohols polar. 24034-73-9, formula is C20H34O, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Electric Literature of 24034-73-9

Du, Chunyan;Li, Yanan;Fan, Junting;Tan, Rui;Jiang, Hezhong research published 《 Chemical composition, antioxidant and antimicrobial activities of essential oil from the leaves of Lindera fragrans Oliv》, the research content is summarized as follows. The chem. composition of the essential oil obtained by hydrodistillation from the leaves of Lindera fragrans Oliv. was determined by gas chromatog. (GC) and gas chromatog. coupled with mass spectrometry (GC-MS). Sixty two compounds accounting 76.45% of the essential oil were identified. The main constituents found to be spathulenol (27.63%), ledol (6.81%), β-caryophyllene (4.01%), (+)-cis-limonene oxide (3.69%), α-cadinol (3.24%). The disk diffusion method on antimicrobial activities revealed that it has remarkable inhibition effect against Escherichia coli (CP009072.1), Staphylococcus aureus (CP009361.1), Pseudomonas aeruginosa (CP015117.1) and Candida albicans (FJ159643.1). Antioxidant capacity of the essential oil was evaluated by 2,2′ -diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and β- carotene bleaching assay, and it did not show effective antioxidant activity.

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Electric Literature of 24034-73-9

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Drishya, Sudarsanan team published research on Journal of Food Biochemistry in 2022 | 24034-73-9

Reference of 24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, 24034-73-9.

Reference of 24034-73-9, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 24034-73-9, name is (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.

Drishya, Sudarsanan;Dhanisha, Suresh Sulekha;Guruvayoorappan, Chandrasekharan research published 《 Antioxidant-rich fraction of Amomum subulatum fruits mitigates experimental methotrexate-induced oxidative stress by regulating TNF-α, IL-1β, and IL-6 proinflammatory cytokines》, the research content is summarized as follows. The culinary spice Amomum subulatum was assessed for its phytochem. composition, in vitro antioxidant potential, and in vivo ameliorating effect against methotrexate (MTX)-induced toxicities. Phytochem. anal. of methanolic extract of A. subulatum dry fruits (MEAS) confirmed the presence of different bioactive secondary metabolites. The MEAS scavenged reactive free radicals and inhibited lipid peroxidation in vitro. To confirm the antioxidant efficiency of MEAS, in vivo experiment was carried out in which MTX was administered to induce oxidative stress. Co-administration of MEAS reduced MTX-induced hepatic, renal, and pulmonary toxicities via significantly (p < .01) enhancing antioxidant status and reducing oxidative stress. The MTX treatment significantly (p < .01) increased liver and kidney toxicity markers and increased proinflammatory cytokine (TNF-α, IL-1β, and IL-6) levels. However, co-administration of MEAS significantly (p < .01) reduced their levels, and tissue histopathol. confirmed the protective effect of MEAS in maintaining normal tissue architecture following MTX treatment. Protective effect of MEAS is accredited to the antioxidant and anti-inflammatory properties exhibited by bioactive compounds in MEAS.

Reference of 24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, 24034-73-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Dorokhov, Valentin S. team published research on Organic Letters in 2021 | 72824-04-5

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Application of C9H17BO2

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 72824-04-5, formula is C9H17BO2, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Application of C9H17BO2

Dorokhov, Valentin S.;Zard, Samir Z. research published 《 Modular Approach to Substituted Pyridoazepinones》, the research content is summarized as follows. Pyridoazepinones are potentially interesting structures, yet they are still underexploited in the medicinal chem. field and hard to obtain synthetically. Here, a general and flexible synthetic route to substituted pyridoazepinones, enabled by the xanthate addition-transfer process, which furnishes the target mols. from readily available starting materials in generally good yields is presented. The method shows good functional group tolerance and allows the preparation of pyridoazepinone scaffolds on gram scale.

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Application of C9H17BO2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Doppler, Diandra team published research on Journal of Applied Crystallography in 2022 | 647-42-7

647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., Name: 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 647-42-7, formula is C8H5F13O, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Name: 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol

Doppler, Diandra;Rabbani, Mohammad T.;Letrun, Romain;Cruz Villarreal, Jorvani;Kim, Dai Hyun;Gandhi, Sahir;Egatz-Gomez, Ana;Sonker, Mukul;Chen, Joe;Koua, Faisal H. M.;Yang, Jayhow;Youssef, Mohamed;Mazalova, Victoria;Bajt, Sasa;Shelby, Megan L.;Coleman, Matt A.;Wiedorn, Max O.;Knoska, Juraj;Schon, Silvan;Sato, Tokushi;Hunter, Mark S.;Hosseinizadeh, Ahmad;Kuptiz, Christopher;Nazari, Reza;Alvarez, Roberto C.;Karpos, Konstantinos;Zaare, Sahba;Dobson, Zachary;Discianno, Erin;Zhang, Shangji;Zook, James D.;Bielecki, Johan;de Wijn, Raphael;Round, Adam R.;Vagovic, Patrik;Kloos, Marco;Vakili, Mohammad;Ketawala, Gihan K.;Stander, Natasha E.;Olson, Tien L.;Morin, Katherine;Mondal, Jyotirmory;Nguyen, Jonathan;Meza-Aguilar, Jose Domingo;Kodis, Gerdenis;Vaiana, Sara;Martin-Garcia, Jose M.;Mariani, Valerio;Schwander, Peter;Schmidt, Marius;Messerschmidt, Marc;Ourmazd, Abbas;Zatsepin, Nadia;Weierstall, Uwe;Bruce, Barry D.;Mancuso, Adrian P.;Grant, Thomas;Barty, Anton;Chapman, Henry N.;Frank, Matthias;Fromme, Raimund;Spence, John C. H.;Botha, Sabine;Fromme, Petra;Kirian, Richard A.;Ros, Alexandra research published 《 Co-flow injection for serial crystallography at X-ray free-electron lasers》, the research content is summarized as follows. Serial femtosecond crystallog. (SFX) is a powerful technique that exploits X-ray free-electron lasers to determine the structure of macromols. at room temperature Despite the impressive exposition of structural details with this novel crystallog. approach, the methods currently available to introduce crystals into the path of the X-ray beam sometimes exhibit serious drawbacks. Samples requiring liquid injection of crystal slurries consume large quantities of crystals (at times up to a gram of protein per data set), may not be compatible with vacuum configurations on beamlines or provide a high background due to addnl. sheathing liquids present during the injection. Proposed and characterized here is the use of an immiscible inert oil phase to supplement the flow of sample in a hybrid microfluidic 3D-printed co-flow device. Co-flow generation is reported with sample and oil phases flowing in parallel, resulting in stable injection conditions for two different resin materials exptl. A numerical model is presented that adequately predicts these flow-rate conditions. The co-flow generating devices reduce crystal clogging effects, have the potential to conserve protein crystal samples up to 95% and will allow degradation-free light-induced time-resolved SFX.

647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., Name: 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Dong, Zhe team published research on Nature (London, United Kingdom) in 2021 | 7748-36-9

7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., Name: Oxetan-3-ol

Name: Oxetan-3-ol, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 7748-36-9, name is Oxetan-3-ol, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.

Dong, Zhe;MacMillan, David W. C. research published 《 Metallaphotoredox-enabled deoxygenative arylation of alcohols》, the research content is summarized as follows. Metal-catalyzed cross-couplings are a mainstay of organic synthesis and are widely used for the formation of C-C bonds, particularly in the production of unsaturated scaffolds1. However, alkyl cross-couplings using native sp3-hybridized functional groups such as alcs. remain relatively underdeveloped2. In particular, a robust and general method for the direct deoxygenative coupling of alcs. would have major implications for the field of organic synthesis. A general method for the direct deoxygenative cross-coupling of free alcs. must overcome several challenges, most notably the in situ cleavage of strong C-O bonds3, but would allow access to the vast collection of com. available, structurally diverse alcs. as coupling partners4. Authors report herein a metallaphotoredox-based cross-coupling platform in which free alcs. are activated in situ by N-heterocyclic carbene salts for carbon-carbon bond formation with aryl halide coupling partners. This method is mild, robust, selective and most importantly, capable of accommodating a wide range of primary, secondary and tertiary alcs. as well as pharmaceutically relevant aryl and heteroaryl bromides and chlorides. The power of the transformation has been demonstrated in a number of complex settings, including the late-stage functionalization of Taxol and a modular synthesis of Januvia, an antidiabetic medication. This technol. represents a general strategy for the merger of in situ alc. activation with transition metal catalysis.

7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., Name: Oxetan-3-ol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts