Engelsma, Sander B. team published research on European Journal of Organic Chemistry in 2018 | 141699-55-0

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Recommanded Product: tert-Butyl 3-hydroxyazetidine-1-carboxylate

Recommanded Product: tert-Butyl 3-hydroxyazetidine-1-carboxylate, In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl functional group (−OH) bound to a saturated carbon atom. 141699-55-0, name is tert-Butyl 3-hydroxyazetidine-1-carboxylate, An important class of alcohols, of which methanol and ethanol are the simplest examples, includes all compounds which conform to the general formula CnH2n+1OH.

Engelsma, Sander B.;van den Ende, Thomas C.;Overkleeft, Hermen S.;van der Marel, Gijsbert A.;Filippov, Dmitri V. research published 《 Reaction Rates of Various N-Acylenamines in the Inverse-Electron-Demand Diels-Alder Reaction》, the research content is summarized as follows. In light of the bioorthogonal inverse-electron-demand Diels-Alder strategy, an extended investigation into the effects of ring strain and electron inductive effects on the reactivity of the N-acylenamine core towards tetrazine has been carried out. Through a comparative study between N-acylazetines, N-vinylcarbamates and an N-vinylamide it was shown that ring strain has a more significant effect on reaction rate than electron donation. A significantly improved synthetic route is reported for the preparation of an N-acylazetine biorthogonal tag reported previously.

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., Recommanded Product: tert-Butyl 3-hydroxyazetidine-1-carboxylate

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Emmetiere, Fabien team published research on Synthesis in 2020 | 72824-04-5

Electric Literature of 72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 72824-04-5, formula is C9H17BO2, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Electric Literature of 72824-04-5

Emmetiere, Fabien;Grenning, Alexander J. research published 《 Functional Group Interconversion of Alkylidenemalononitriles to Primary Alcohols by a Cooperative Redox Operation》, the research content is summarized as follows. A strategy to convert alkylidenemalononitriles into primary alcs. in one step was reported. The reaction relies on a choreographed redox process involving alkylidene reduction, malononitrile oxidation, and acylcyanide reduction where mol. oxygen and NaBH4 work cooperatively. The method was applied to a variety of carbon skeletons and was utilized to synthesize complex terpenoid architectures.

Electric Literature of 72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Elango, Munusamy team published research on International Journal of Quantum Chemistry in 2011 | 16545-68-9

Computed Properties of 16545-68-9, Cyclopropanol is a cyclopropane in which a hydrogen atom is replaced by a hydroxy group. It is a member of cyclopropanes and an aliphatic alcohol.
Cyclopropanol is a useful research compound. Its molecular formula is C3H6O and its molecular weight is 58.08 g/mol. The purity is usually 95%.
Cyclopropanol is a cyclic organic compound that is synthesized from sodium hydroxide solution, nitrogen atoms, and carbonyl groups. Cyclopropanol has shown inhibitory effects on inflammatory bowel disease in rats. This drug also inhibits the production of hydrogen chloride and hydrochloric acid in the stomach, which can lead to ulcers. Cyclopropanol has been found to be effective against bowel diseases such as Crohn’s disease and ulcerative colitis. This drug has been shown to have strong antioxidant properties, which may be due to its ability to reduce hydroxyl radicals., 16545-68-9.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 16545-68-9, formula is C3H6O, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Computed Properties of 16545-68-9

Elango, Munusamy;Maciel, Glauciete S.;Lombardi, Andrea;Cavalli, Simonetta;Aquilanti, Vincenzo research published 《 Quantum chemical and dynamical approaches to intra and intermolecular kinetics: The CnH2nO (n = 1, 2, 3) molecules》, the research content is summarized as follows. An account is given of isomerization and decomposition paths in the title mols., as obtained by characterizing stable isomers and transition states using quantum chem. and reaction rate theories. For n = 1 (formaldehyde) intrinsic reaction paths are calculated to provide rates for decomposition mechanisms dominated by quantum mech. tunneling. The n = 2 closed shell isomers are acetaldehyde, ethylene oxide, and vinyl alc., which interconvert and decompose through alternative paths. For n = 3, the very large number of isomers are characterized using an efficient automatic search algorithm recently made available by Ohno and Maeda. Interconversion paths are also found, including those involving chiral change mechanisms for propylene oxide. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2010.

Computed Properties of 16545-68-9, Cyclopropanol is a cyclopropane in which a hydrogen atom is replaced by a hydroxy group. It is a member of cyclopropanes and an aliphatic alcohol.
Cyclopropanol is a useful research compound. Its molecular formula is C3H6O and its molecular weight is 58.08 g/mol. The purity is usually 95%.
Cyclopropanol is a cyclic organic compound that is synthesized from sodium hydroxide solution, nitrogen atoms, and carbonyl groups. Cyclopropanol has shown inhibitory effects on inflammatory bowel disease in rats. This drug also inhibits the production of hydrogen chloride and hydrochloric acid in the stomach, which can lead to ulcers. Cyclopropanol has been found to be effective against bowel diseases such as Crohn’s disease and ulcerative colitis. This drug has been shown to have strong antioxidant properties, which may be due to its ability to reduce hydroxyl radicals., 16545-68-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Eikemo, Vebjoern team published research on RSC Advances in 2021 | 72824-04-5

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Product Details of C9H17BO2

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 72824-04-5, formula is C9H17BO2, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Product Details of C9H17BO2

Eikemo, Vebjoern;Sydnes, Leiv K.;Sydnes, Magne O. research published 《 Photodegradable antimicrobial agents – synthesis, photodegradation, and biological evaluation》, the research content is summarized as follows. Multi-drug resistant (MDR) bacteria are already a significant health-care problem and are making the combat of infections quite challenging. Here we report the synthesis of several new compounds containing an ethanolamine moiety, of which two exhibit promising antimicrobial activity (at the 6 μM level). All the compounds are degraded when exposed to light and form inactive products.

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Product Details of C9H17BO2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Eid, Nadim team published research on Polymer Chemistry in 2021 | 647-42-7

Related Products of 647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., 647-42-7.

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 647-42-7, formula is C8H5F13O, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Related Products of 647-42-7

Eid, Nadim;Ameduri, Bruno;Gimello, Olinda;Bonnet, Anthony;Devisme, Samuel research published 《 Vinylidene fluoride polymerization by metal-free selective activation of hydrogen peroxide: microstructure determination and mechanistic study》, the research content is summarized as follows. Hydrogen peroxide-initiated radical polymerization of vinylidene fluoride (VDF) at 130°C in di-Me carbonate is presented. Various reaction parameters such as the nature of the solvent, the nature and the amount of the additive, and the reaction temperature were optimized. Hydrogen peroxide was activated with azobisisobutyronitrile (AIBN), which was not able to initiate the radical polymerization of VDF but afforded hydroxyl radicals via selective homolytic cleavage of the O-O bond of H2O2. The reactivity of hydroxyl radicals with the different components of the medium was evaluated. The microstructure of the resulting PVDFs was determined by NMR spectroscopy and MALDI-TOF spectrometry. Seven different chain-ends were identified and could be well revealed from synthesized models: 60% were functional, e.g., carbonates, alcs., carboxylic acids and fluorinated olefins, whereas 40% were CF2H and CF2CH3 fluoroalkyls as the products of hydrogen transfer termination reactions. Finally, based on the collected exptl. data, a mechanistic pathway of the polymerization was proposed in order to explain the formation of such different functional and non-functional end-groups. In addition, the selectivity of the different radical additions onto VDF was studied and is discussed.

Related Products of 647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., 647-42-7.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Ehlers, Stephanie team published research on ChemBioChem in 2021 | 24034-73-9

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Category: alcohols-buliding-blocks

In general, the hydroxyl group makes alcohols polar. 24034-73-9, formula is C20H34O, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Category: alcohols-buliding-blocks

Ehlers, Stephanie;Szczerbowski, Daiane;Harig, Tim;Stell, Matthew;Hotling, Susan;Darragh, Kathy;Jiggins, Chris D.;Schulz, Stefan research published 《 Identification and Composition of Clasper Scent Gland Components of the Butterfly Heliconius erato and Its Relation to Mimicry》, the research content is summarized as follows. The butterfly Heliconius erato occurs in various mimetic morphs. The male clasper scent gland releases an anti-aphrodisiac pheromone and addnl. contains a complex mixture of up to 350 components, varying between individuals. In 114 samples of five different mimicry groups and their hybrids 750 different compounds were detected by gas chromatog./mass spectrometry (GC/MS). Many unknown components occurred, which were identified using their mass spectra, gas chromatog./IR spectroscopy (GC/IR)-analyses, derivatization, and synthesis. Key compounds proved to be various esters of 3-oxohexan-1-ol and (Z)-3-hexen-1-ol with (S)-2,3-dihydrofarnesoic acid, accompanied by a large variety of other esters with longer terpene acids, fatty acids, and various alcs. In addition, linear terpenes with up to seven uniformly connected isoprene units occur, e. g. farnesylfarnesol. A large number of the compounds have not been reported before from nature. Discriminant analyses of principal components of the gland contents showed that the iridescent mimicry group differs strongly from the other, mostly also separated, mimicry groups. Comparison with data from other species indicated that Heliconius recruits different biosynthetic pathways in a species-specific manner for semiochem. formation.

24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Ehiabhi, Okhale Samuel team published research on International Journal of Pharmacognosy (Panchkula, India) in 2020 | 24034-73-9

Name: (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, 24034-73-9.

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 24034-73-9, formula is C20H34O, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Name: (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol

Ehiabhi, Okhale Samuel;Modupeoluwa, Ogunfowokan Ifeoluwapo research published 《 Comparative essential oil composition of Laurus nobilis, Syzygium guineense and Syzygium eucalyptoides in search for Nigerian bay leaf – Part I》, the research content is summarized as follows. Bay leaf is an aromatic leaf commonly used in cooking for its distinctive flavor and fragrance. The bay leaf sold in Nigerian markets being Laurus nobilis (L. nobilis) is imported. The leaf of Syzygium guineense (S. guineense) and Syzygium eucalyptoides (S. eucalyptoides) have a long history of use as vegetables and spices in Nigeria. In this study, leaf of S. guineense, S. eucalyptoides, and a com. sample of L. nobilis being the gold standard for bay leaf, were evaluated for comparative essential oil composition in search of Nigerian bay leaf. The essential oil was obtained by hydrodistillation using a Clevenger-type apparatus The essential oils were analyzed by gas chromatog.-mass spectrometry (GC-MS). The major chem. constituents of the essential oil of L. nobilis were eucalyptol (9.33%), α- pinene (8.31%), and camphene (3.17%). S. guineensec contained β-myrcene (12.29%), globulol (7.60%), phytol (6.63%) and trans-ocimene (6.08%). S. eucalyptoides leaf essential oil contained 6-octadecanoic acid (16.37%), phytol (8.46%), 6-octadenanoic acid (9%), pentadenanoic acid (7.26%), caryophyllenyl alc. (6.17%). L. nobilis leaf essential oil contained 75 constituents; 16 out of S. guineense essential oil constituents (21%) matched those of L. nobilis and S. eucalyptoides had 6 correspondings to 8% match. This study provided preliminary information for; further, assessment of S. guineense, S. eucalyptoides and other aromatic plants for possible use as Nigerian bay leaf and a replacement for L. nobilis.

Name: (2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-ol, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, 24034-73-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Egert, Thomas team published research on European Journal of Pharmaceutical Sciences in 2022 | 647-42-7

647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., Formula: C8H5F13O

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 647-42-7, formula is C8H5F13O, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Formula: C8H5F13O

Egert, Thomas;Langowski, Horst-Christian research published 《 Linear solvation energy relationships (LSERs) for robust prediction of partition coefficients between low density polyethylene and water. Part I: Experimental partition coefficients and model calibration》, the research content is summarized as follows. When equilibrium of leaching is reached within a product′s duty cycle, partition coefficients polymer/solution dictate the maximum accumulation of a leachable and thus, patient exposure by leachables. Yet, in the pharmaceutical and food industry, exposure estimates based on predictive modeling typically rely on coarse estimations of the partition coefficient, with accurate and robust models lacking. This first part of the study aimed to investigate linear solvation energy relationships (LSERs) as high performing models for the prediction of partition coefficients polymer/water. For this, partition coefficients between low d. polyethylene (LDPE) and aqueous buffers for 159 compounds spanning a wide range of chem. diversity, mol. weight, vapor pressure, aqueous solubility and polarity (hydrophobicity) were determined and complimentary data collected from the literature (n=159, MW: 32 to 722, logKi,O/W: -0.72 to 8.61 and logKi,LDPE/W: -3.35 up to 8.36). The chem. space represented by this compounds set is considered indicative for the universe of compounds potentially leaching from plastics. Based on the dataset for the LDPE material purified by solvent extraction, a LSER model for partitioning between LDPE and water was calibrated to give:logKi,LDPE/W = – 0.529 + 1.098Ei – 1.557Si – 2.991Ai – 4.617Bi + 3.886Vi. The model was proven accurate and precise (n = 156, R2 = 0.991, RMSE = 0.264). Further, it was demonstrated superior over a log-linear model fitted to the same data. Nonetheless, it could be shown that log-linear correlations against logKi,O/W can be of value for the estimation of partition coefficients for nonpolar compounds exhibiting low hydrogen-bonding donor and/or acceptor propensity. For nonpolar compounds, the log – linear model was found as: logKi,LDPE/W = 1.18logKi,O/W – 1.33 (n = 115, R2 = 0.985, RMSE=0.313). In contrast, with mono-/bipolar compounds included into the regression data set, an only weak correlation was observed (n= 156, R2 = 0.930, RMSE = 0.742) rendering the log-linear model of more limited value for polar compounds Notably, sorption of polar compounds into pristine (non-purified) LDPE was found to be up to 0.3 log units lower than into purified LDPE. To identify maximum (i.e. worst-case) levels of leaching in support of chem. safety risk assessments on systems attaining equilibrium before end of shelf-life, it appears adequate to utilize LSER – calculated partition coefficients (in combination with solubility data) by ignoring any kinetical information.

647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., Formula: C8H5F13O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Duvall, Bridget team published research on Bioorganic & Medicinal Chemistry in 2020 | 72824-04-5

Reference of 72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

In general, the hydroxyl group makes alcohols polar. 72824-04-5, formula is C9H17BO2, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Reference of 72824-04-5

Duvall, Bridget;Zimmermann, Sarah C.;Gao, Run-Duo;Thomas, Ajit G.;Kalcic, Filip;Veeravalli, Vijayabhaskar;Elgogary, Amira;Rais, Rana;Rojas, Camilo;Le, Anne;Slusher, Barbara S.;Tsukamoto, Takashi research published 《 Allosteric kidney-type glutaminase (GLS) inhibitors with a mercaptoethyl linker》, the research content is summarized as follows. A series of allosteric kidney-type glutaminase (GLS) inhibitors possessing a mercaptoethyl (-SCH2CH2-) linker I [R = Ph, 2-pyridyl, 3-F3CC6H4; R1 = Ph, 2-pyridyl, 3-F3CC6H4, 4-Me2NC6H4] and II [X = CH2, S; Y = CH2, S] were synthesized in an effort to further expand the structural diversity of chemotypes derived from bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES), a prototype allosteric inhibitor of GLS. BPTES analog I [R = Ph; R1 = Ph] with a mercaptoethyl linker between the two thiadiazole rings was found to potently inhibit GLS with an IC50 value of 50 nM. Interestingly, the corresponding derivative with an Pr (-CH2CH2CH2-) linker showed substantially lower inhibitory potency (IC50 = 2.3μM) while the derivative with a dimethylsulfide (-CH2SCH2-) linker showed no inhibitory activity at concentrations up to 100μM, underscoring the critical role played by the mercaptoethyl linker in the high affinity binding to the allosteric site of GLS. Addnl. mercaptoethyl-linked compounds were synthesized and tested as GLS inhibitors to further explore SAR within this scaffold including derivatives possessing a pyridazine as a replacement for one of the two thiadiazole moiety.

Reference of 72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Durand-Niconoff, J. Sergio team published research on RSC Advances in 2021 | 533-73-3

Formula: C6H6O3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 533-73-3, formula is C6H6O3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Formula: C6H6O3

Durand-Niconoff, J. Sergio;Ortiz-Blanco, Erik;Sosa-Ortiz, Gabriela;Olivares-Romero, Jose L.;Juarez-Aguilar, Enrique;Montoya-Hernandez, Eva Luz;Fernandez-Pomares, Cynthia;Tovar-Miranda, Ricardo;Castro, Maria Eugenia;Melendez, Francisco J.;Guerrero, Tomas research published 《 Mannich bases of hydroxycoumarins: synthesis, DFT/QTAIM computational study and assessment of biological activity》, the research content is summarized as follows. The synthesis of six Mannich bases derived from hydroxycoumarins was carried out in moderate yields, two of these derivatives were described for the first time. Conformational anal. was performed through DFT theor. calculations explaining the formation of stable six membered rings based on intramol. hydrogen bonds within the structure. These findings were correlated with the antiproliferative activity. The biol. activity of the Mannich bases through their antiproliferative activity in the HeLa cancer cell line is described for the first time, showing that the compounds were able to inhibit proliferation in cervical cancer by more than 60%. Likewise, the theor. modeling of the photophys. properties was realized with promising results, showing that the HOMO-LUMO energies of the new compounds present the lowest electronic gap values for those with donor groups in their structure, which makes them potential fluorophores.

Formula: C6H6O3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts