Chemistry Milestones Of C8H10O2

Welcome to talk about 105-13-5, If you have any questions, you can contact Tian, YW; Guo, XQ; Li, MC; Li, CM; Hu, XQ; Jin, LQ; Sun, N; Hu, BX; Shen, ZL or send Email.. Recommanded Product: 105-13-5

In 2021 ORG LETT published article about AEROBIC OXIDATION; SILICA; EPOXIDATION; TEMPO in [Tian, Yangwu; Guo, Xiaqun; Li, Meichao; Li, Chunmei; Hu, Xinquan; Jin, Liqun; Sun, Nan; Hu, Baoxiang; Shen, Zhenlu] Zhejiang Univ Technol, Coll Chem Engn, Hangzhou 310014, Peoples R China; [Li, Chunmei] Shaoxing Univ, Sch Chem & Chem Engn, Zhejiang Key Lab Alternat Technol Fine Chem Proc, Shaoxing 312000, Peoples R China in 2021, Cited 38. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Recommanded Product: 105-13-5

Herein, we designed and synthesized an SBA-15 supported 1-methyl-2-azaadamanane N-oxyl (1-Me-AZADO) and investigated its catalytic performance for selective oxidation of alcohols under Anelli’s conditions. The first example of immobilization of 1-Me-AZADO was very important to advance the oxgenation effectively because this supported N-oxyl has excellent catalytic activity for oxidation of alcohols to carbonyl compounds, and more importantly, it can be conveniently recovered and reused at least 6 times without significant effect on its catalytic efficiency.

Welcome to talk about 105-13-5, If you have any questions, you can contact Tian, YW; Guo, XQ; Li, MC; Li, CM; Hu, XQ; Jin, LQ; Sun, N; Hu, BX; Shen, ZL or send Email.. Recommanded Product: 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Never Underestimate The Influence Of C8H10O2

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Category: alcohols-buliding-blocks

I found the field of Chemistry very interesting. Saw the article A green approach for aerobic oxidation of benzylic alcohols catalysed by Cu-I-Y zeolite/TEMPO in ethanol without additional additives published in 2021. Category: alcohols-buliding-blocks, Reprint Addresses Zhong, W; Liu, XM (corresponding author), Jiaxing Univ, Coll Biol Chem Sci & Engn, Jiaxing, Zhejiang, Peoples R China.. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol

An efficient and green protocol for aerobic oxidation of benzylic alcohols in ethanol using Cu-I-Y zeolite catalysts assisted by TEMPO (TEMPO = 2,2,6,6-tetramethyl-1-piperidine-N-oxyl) as the radical co-catalyst in the presence of atmospheric air under mild conditions is reported. The Cu-I-Y zeolite prepared via ion exchange between CuCl and HY zeolite was fully characterized by a variety of spectroscopic techniques including XRD, XPS, SEM, EDX and HRTEM. The incorporation of Cu(i) into the 3D-framework of the zeolite rendered the catalyst with good durability. The results of repetitive runs revealed that in the first three runs, there was hardly a decline in activity and a more substantial decrease in yield was observed afterwards, while the selectivity remained almost unchanged. The loss in activity was attributed to both the formation of CuO and the bleaching of copper into the liquid phase during the catalysis, of which the formation of CuO was believed to be the major contributor since the bleaching loss for each run was negligible (<2%). In this catalytic system, except TEMPO, no other additives were needed, either a base or a ligand, which was essential in some reported catalytic systems for the oxidation of alcohols. The aerobic oxidation proceeded under mild conditions (60 degrees C, and 18 hours) to quantitatively and selectively convert a wide range of benzylic alcohols to corresponding aldehydes, which shows great potential in developing green and environmentally benign catalysts for aerobic oxidation of alcohols. The system demonstrated excellent tolerance against electron-withdrawing groups on the phenyl ring of the alcohols and showed sensitivity to steric hindrance of the substrates, which is due to the confinement of the pores of the zeolite in which the oxidation occurred. Based on the mechanism reported in the literature for homogenous oxidation, a mechanism was analogously proposed for the aerobic oxidation of benzylic alcohols catalysed by this Cu(i)-containing zeolite catalyst. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Category: alcohols-buliding-blocks

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

New explortion of (4-Methoxyphenyl)methanol

HPLC of Formula: C8H10O2. Welcome to talk about 105-13-5, If you have any questions, you can contact Bisht, NS; Mehta, SPS; Sahoo, NG; Dandapat, A or send Email.

HPLC of Formula: C8H10O2. Authors Bisht, NS; Mehta, SPS; Sahoo, NG; Dandapat, A in ROYAL SOC CHEMISTRY published article about in [Bisht, Narendra Singh; Mehta, S. P. S.; Sahoo, Nanda Gopal; Dandapat, Anirban] Kumaun Univ, Dept Chem, DSB Campus, Naini Tal, Uttarakhand, India in 2021, Cited 74. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

The room temperature synthesis of an all-solid-state Z-scheme CuO-doped BiOBr (CuO-Bi-BiOBr) photocatalyst has been described. These CuO-Bi-BiOBr ternary heterojunctions exhibit efficient photocatalytic activities for selective alcohol oxidation. The structures, morphologies, and compositions of the nanostructures were well characterized using field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and atomic absorption spectroscopy (AAS). The X-ray diffraction (XRD) pattern of the as-synthesized nanostructures confirms the formation of phase-segregated CuO and BiOBr nanocrystals, whereas X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM) analyses clearly indicate the formation of metallic bismuth nanoparticles (NPs). Next, the developed CuO-Bi-BiOBr ternary heterojunctions were applied as an efficient photocatalyst for the oxidation of alcohols into their corresponding aldehydes/ketones with high selectivity (>99%) and high conversion ratios (>99%). Herein, Bi metal NPs act as an electron mediator and bridge the connectivity between the two semiconductors, BiOBr and CuO, and, thus, a Z-scheme heterojunction is established. As expected, CuO-Bi-BiOBr has shown significantly superior activities compared to those of pure BiOBr. A possible mechanism for the photocatalytic oxidation process has been proposed. Radical scavenging experiments suggest that the active species, h(+), OH, e(-), and O-2(-), are dominant in the alcohol oxidation process. The as-synthesized CuO-Bi-BiOBr was reused several times without any significant deterioration in the original activities and it thus possesses relatively high stability for practical applications.

HPLC of Formula: C8H10O2. Welcome to talk about 105-13-5, If you have any questions, you can contact Bisht, NS; Mehta, SPS; Sahoo, NG; Dandapat, A or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

How did you first get involved in researching (4-Methoxyphenyl)methanol

Recommanded Product: 105-13-5. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

An article Angiopoietin-2 and angiopoietin-like 4 protein provide prognostic information in patients with suspected acute coronary syndrome WOS:000670734000001 published article about SOLUBLE RECEPTOR TIE-2; CARDIOVASCULAR MORTALITY; ANGPTL4; DISEASE; RISK; ANGIOGENESIS; BIOMARKER; EVENTS in [Aarsetoy, Reidun; Ponitz, Volker; Brugger-Andersen, Trygve; Nilsen, Dennis W. T.] Stavanger Univ Hosp, Dept Cardiol, POB 8100, N-4068 Stavanger, Norway; [Aarsetoy, Reidun; Grundt, Heidi; Nilsen, Dennis W. T.] Univ Bergen, Dept Clin Sci, Bergen, Norway; [Ueland, Thor; Aukrust, Pal; Michelsen, Annika E.] Oslo Univ Hosp, Res Inst Internal Med, Rikshosp, Oslo, Norway; [Aukrust, Pal] Oslo Univ Hosp, Sect Clin Immunol & Infect Dis, Rikshosp, Oslo, Norway; [de la Fuente, Ricardo Leon] Ctr Cardiovasc Salta, Salta, Argentina; [Grundt, Heidi] Stavanger Univ Hosp, Dept Resp Med, Stavanger, Norway; [Staines, Harry] Sigma Stat Serv, Balmullo, Scotland in , Cited 34. Recommanded Product: 105-13-5. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Background Plasma levels of angiopoietin-2 (ANGPT2) and angiopoietin-like 4 protein (ANGPTL4) reflect different pathophysiological aspects of cardiovascular disease. We evaluated their association with outcome in a hospitalized Norwegian patient cohort (n = 871) with suspected acute coronary syndrome (ACS) and validated our results in a similar Argentinean cohort (n = 982). Methods A cox regression model, adjusting for traditional cardiovascular risk factors, was fitted for ANGPT2 and ANGPTL4, respectively, with all-cause mortality and cardiac death within 24 months and all-cause mortality within 60 months as the dependent variables. Results At 24 months follow-up, 138 (15.8%) of the Norwegian and 119 (12.1%) of the Argentinian cohort had died, of which 86 and 66 deaths, respectively, were classified as cardiac. At 60 months, a total of 259 (29.7%) and 173 (17.6%) patients, respectively, had died. ANGPT2 was independently associated with all-cause mortality in both cohorts at 24 months [hazard ratio (HR) 1.27 (95% confidence interval (CI), 1.08-1.50) for Norway, and HR 1.57 (95% CI, 1.27-1.95) for Argentina], with similar results at 60 months [HR 1.19 (95% CI, 1.05-1.35) (Norway), and HR 1.56 (95% CI, 1.30-1.88) (Argentina)], and was also significantly associated with cardiac death [HR 1.51 (95% CI, 1.14-2.00)], in the Argentinean population. ANGPTL4 was significantly associated with all-cause mortality in the Argentinean cohort at 24 months [HR 1.39 (95% CI, 1.15-1.68)] and at 60 months [HR 1.43 (95% CI, 1.23-1.67)], enforcing trends in the Norwegian population. Conclusions ANGPT2 and ANGPTL4 were significantly associated with outcome in similar ACS patient cohorts recruited on two continents. Clinical Trial Registration ClinicalTrials.gov Identifier: NCT00521976. ClinicalTrials.gov Identifier: NCT01377402.

Recommanded Product: 105-13-5. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Can You Really Do Chemisty Experiments About (4-Methoxyphenyl)methanol

Category: alcohols-buliding-blocks. Welcome to talk about 105-13-5, If you have any questions, you can contact Wang, J; Gu, XM; Pei, LJ; Kong, P; Zhang, J; Wang, XY; Wang, RY; Waclawik, ER; Zheng, ZF or send Email.

I found the field of Chemistry; Engineering very interesting. Saw the article Strong metal-support interaction induced O-2 activation over Au/MNb2O6 (M= Zn2+, Ni2+ and Co2+) for efficient photocatalytic benzyl alcohol oxidative esterification published in 2021. Category: alcohols-buliding-blocks, Reprint Addresses Gu, XM; Zheng, ZF (corresponding author), Chinese Acad Sci, Inst Coal Chem, State Key Lab Coal Convers, Taiyuan 030001, Peoples R China.; Waclawik, ER (corresponding author), Queensland Univ Technol, Sch Chem Phys & Mech Engn, Brisbane, Qld 4001, Australia.. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol

A series of metal niobates (MNb2O6, M = Zn2+, Ni2+ and Co2+) were prepared from H-niobate precursor under hydrothermal conditions, in which amino groups of L-lysine play an important role. Au nanoparticles were then supported on these niobates by NaBH4 reduction method. More importantly, the strong interaction between Au nanoparticles and ZnNb2O6 generates negatively charged Au which can activate molecular oxygen to form the exclusive high-active peroxide (NbOOAu) species on Au/ZnNb2O6 surface under visible light irradiation, observed in situ by diffuse reflectance infrared Fourier transform spectra (DRIFTS). The optimal NbOOAu species produced on the surface of Au/ZnNb2O6 can remove the H atom of the methylene group (-CH2-) of benzyl alcohol, leading to high photocatalytic activity of Au/ZnNb2O6 compared with Au/NiNb2O6 and Au/CoNb2O6. This modulation of interaction of Au and niobates for the activation of molecular oxygen provides a new prospect for highly selective photocatalytic oxidation reactions.

Category: alcohols-buliding-blocks. Welcome to talk about 105-13-5, If you have any questions, you can contact Wang, J; Gu, XM; Pei, LJ; Kong, P; Zhang, J; Wang, XY; Wang, RY; Waclawik, ER; Zheng, ZF or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Extracurricular laboratory: Synthetic route of 105-13-5

Application In Synthesis of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Arslan, B; Gulcemal, S or send Email.

Application In Synthesis of (4-Methoxyphenyl)methanol. In 2021 DALTON T published article about ONE-POT SYNTHESIS; BORROWING HYDROGEN; SECONDARY ALCOHOLS; NITRILES; MONOALKYLATION; RHODIUM; BENZYL; LIGAND; HYDROTALCITE; ACETONITRILE in [Arslan, Burcu; Gulcemal, Suleyman] Ege Univ, Dept Chem, TR-35100 Izmir, Turkey in 2021, Cited 65. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

A series of backbone-modified N-heterocyclic carbene (NHC) complexes of iridium(I) (1d-f) have been synthesized and characterized. The electronic properties of the NHC ligands have been assessed by comparison of the IR carbonyl stretching frequencies of the in situ prepared [IrCl(CO)(2)(NHC)] complexes in CH2Cl2. These new complexes (1d-f), together with previously prepared 1a-c, were applied as catalysts for the alpha-alkylation of arylacetonitriles with an equimolar amount of primary alcohols or 2-aminobenzyl alcohol. The catalytic activities of these complexes could be controlled by modifying the N-substituents and backbone of the NHC ligands. The NHC-Ir-I complex 1f bearing 4-methoxybenzyl substituents on the N-atoms and 4-methoxyphenyl groups at the 4,5-positions of imidazole exhibited the highest catalytic activity in the alpha-alkylation of arylacetonitriles with primary alcohols. Various alpha-alkylated nitriles and aminoquinolines were obtained in high yields through a borrowing hydrogen pathway by using 0.1 mol% 1f and a catalytic amount of KOH (5 mol%) under an air atmosphere within significantly short reaction times.

Application In Synthesis of (4-Methoxyphenyl)methanol. Welcome to talk about 105-13-5, If you have any questions, you can contact Arslan, B; Gulcemal, S or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Simple exploration of 105-13-5

Recommanded Product: (4-Methoxyphenyl)methanol. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Recommanded Product: (4-Methoxyphenyl)methanol. Authors Yao, HY; Wang, YS; Razi, MK in ROYAL SOC CHEMISTRY published article about in [Yao, Hongyan] Hebi Polytech, Deans Off, Hebi 458030, Peoples R China; [Wang, Yongsheng] Henan Polytech Univ, Sch Phys Sci Educ, Jiaozuo 454003, Henan, Peoples R China; [Razi, Maryam Kargar] Islamic Azad Univ, North Branch Tehran, Fac Chem, Tehran, Iran in 2021, Cited 82. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

In this study, a magnetic asymmetric Salamo-based Zn complex (H2L = salen type di-Schiff bases)-supported on the surface of modified Fe3O4 (Fe3O4@H2L-Zn) as a new catalyst was designed and characterized via numerous analytical techniques such as FT-IR spectroscopy, XRD, EDS, ICP-AES, SEM, TEM, TGA and VSM. An efficient and sustainable synthetic protocol has been presented for the synthesis of silyl ether substructures via the silyl protection of alcohols under mild conditions. The synthetic protocol involves a two-component solvent-free reaction between various hydroxyl-bearing substrates and hexamethyldisilazane (HMDS) as an inexpensive silylating agent using Fe3O4@H2L-Zn MNPs as a magnetically separable, recyclable and reusable heterogeneous catalyst. Fe3O4@H2L-Zn MNPs were also applied for the removal of silyl protecting groups from hydroxyl functions using water in CH2Cl2 under green conditions. The catalyst demonstrated good to excellent catalytic yield efficiency for both the reactions compared to the commercial metal-based catalysts under green conditions for a wide range of substrates.

Recommanded Product: (4-Methoxyphenyl)methanol. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Why do aromatic interactions matter of compound:C8H10O2

SDS of cas: 105-13-5. Welcome to talk about 105-13-5, If you have any questions, you can contact Das, S; Mondal, R; Chakraborty, G; Guin, AK; Das, A; Paul, ND or send Email.

I found the field of Chemistry very interesting. Saw the article Zinc Stabilized Azo-anion Radical in Dehydrogenative Synthesis of N-Heterocycles. An Exclusively Ligand Centered Redox Controlled Approach published in 2021. SDS of cas: 105-13-5, Reprint Addresses Paul, ND (corresponding author), Indian Inst Engn Sci & Technol, Dept Chem, Howrah 711103, India.. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol

Herein we report an exclusively ligand-centered redox controlled approach for the dehydrogenation of a variety of N-heterocycles using a Zn(II)-stabilized azo-anion radical complex as the catalyst. A simple, easy-to-prepare, and bench-stable Zn(II)-complex (1b) featuring the tridentate arylazo pincer, 2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline, in the presence of zinc-dust, undergoes reduction to form the azo-anion radical species [1b]which efficiently dehydrogenates various saturated N-heterocycles such as 1,2,3,4-tetrahydro-2-methylquinoline, 1,2,3,4-tetrahydro-isoquinoline, indoline, 2-phenyl-2,3-dihydro-1H-benzoimidazole, 2,3-dihydro-2-phenylquinazolin-4(1H)-one, and 1,2,3,4-tetrahydro-2-phenylquinazolines, among others, under air. The catalyst has further been found to be compatible with the cascade synthesis of these N-heterocycles via dehydrogenative coupling of alcohols with other suitable coupling partners under air. Mechanistic investigation reveals that the dehydrogenation reactions proceed via a one-electron hydrogen atom transfer (HAT) pathway where the zinc-stabilized azo-anion radical ligand abstracts the hydrogen atom from the organic substrate(s), and the whole catalytic cycle proceeds via the exclusive involvement of the ligand-centered redox events where the zinc acts only as the template.

SDS of cas: 105-13-5. Welcome to talk about 105-13-5, If you have any questions, you can contact Das, S; Mondal, R; Chakraborty, G; Guin, AK; Das, A; Paul, ND or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Interesting scientific research on (4-Methoxyphenyl)methanol

Welcome to talk about 105-13-5, If you have any questions, you can contact Bellardita, M; Yurdakal, S; Tek, BS; Degirmenci, C; Palmisano, G; Loddo, V; Palmisano, L; Soria, J; Sanz, J; Augugliaro, V or send Email.. Quality Control of (4-Methoxyphenyl)methanol

Authors Bellardita, M; Yurdakal, S; Tek, BS; Degirmenci, C; Palmisano, G; Loddo, V; Palmisano, L; Soria, J; Sanz, J; Augugliaro, V in ELSEVIER SCI LTD published article about ORGANIC-CHEMISTRY; AROMATIC ALCOHOLS; AQUEOUS GLUCOSE; BENZOIC-ACID; WATER; HYDROCARBONS; DEGRADATION in [Bellardita, Marianna; Loddo, Vittorio; Palmisano, Leonardo; Augugliaro, Vincenzo] Univ Palermo, Dipartimento Ingn, Schiavello Grillone Photocatalysis Grp, Viale Sci,Ed 6, I-90128 Palermo, Italy; [Yurdakal, Sedat; Tek, Bilge Sina] Afyon Kocatepe Univ, Fen Edebiyat Fak, Kimya Bolumu, Ahmet Necdet Sezer Kampusu, TR-03200 Afyon, Turkey; [Degirmenci, Caglar] Eskisehir Tekn Univ, Fen Fak, Kimya Bolumu, Yunus Emre Kampusu, TR-26470 Eskisehir, Turkey; [Palmisano, Giovanni] Khalifa Univ Sci & Technol, Dept Chem Engn, POB 127788, Abu Dhabi, U Arab Emirates; [Palmisano, Giovanni] Khalifa Univ Sci & Technol, Res & Innovat Ctr CO2 & H2, POB 127788, Abu Dhabi, U Arab Emirates; [Soria, Javier] CSIC, Inst Catalisis & Petroleoquim, C Marie Curie 2, Madrid 28049, Spain; [Sanz, Jesus] CSIC, Inst Ciencia Mat, Madrid 28049, Spain in 2021, Cited 38. Quality Control of (4-Methoxyphenyl)methanol. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

The influence of pH on the photocatalytic partial oxidation of 4-methoxybenzyl alcohol (MBA) and vanillyl alcohol (VA) to their corresponding aldehydes in aqueous suspension under UVA irradiation was investigated by using poorly crystalline home-prepared and crystalline commercial TiO2 (BDH, Merck and Degussa P25) photocatalysts. The results clearly show as tuning pH can strongly impart selectivity and activity to photocatalytic processes which are often quite unselective in aqueous suspensions. It was found that pH effect on reaction rate and product selectivity strongly depended on TiO2 crystallinity and substrate type. In the case of MBA oxidation, photoreactivity and selectivity were very high at low pH values for all of TiO2 catalysts, and the crystalline samples showed to be more active than the poorly crystalline ones. At pH= 1 the photoactivity of Degussa P25 was the highest one, and 88% selectivity at 50% conversion was determined. At acidic pH values, selectivity and activity were higher in the presence of HCl than H2SO4 or H3PO4. For VA oxidation, high selectivity values were obtained at high pH’s for all of the samples, and the crystalline samples showed higher activity at the alkaline pH values with respect to that observed at the acidic ones. Experiments starting from the obtained products, that are p-anisaldehyde and vanillin, showed that the selectivity depends on the resistance of those compounds to be subjected to further oxidation under the experimental conditions used.

Welcome to talk about 105-13-5, If you have any questions, you can contact Bellardita, M; Yurdakal, S; Tek, BS; Degirmenci, C; Palmisano, G; Loddo, V; Palmisano, L; Soria, J; Sanz, J; Augugliaro, V or send Email.. Quality Control of (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

The important role of (4-Methoxyphenyl)methanol

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Application In Synthesis of (4-Methoxyphenyl)methanol

Application In Synthesis of (4-Methoxyphenyl)methanol. In 2021 COLLOID SURFACE A published article about PHOTOCATALYTIC ACTIVITY; AEROBIC OXIDATION; TITANIUM-DIOXIDE; FACILE SYNTHESIS; ANATASE TIO2; BENZALDEHYDE; ENHANCEMENT; HETEROSTRUCTURE; NANOCOMPOSITES; NANOPARTICLES in [Japa, Mattawan; Phasayavan, Witchaya] Chiang Mai Univ, Grad Sch, Chiang Mai 50200, Thailand; [Japa, Mattawan; Phasayavan, Witchaya; Inceesungvorn, Burapat] Chiang Mai Univ, Fac Sci, Ctr Excellence Innovat Chem PERCH CIC, Ctr Excellence Mat Sci & Technol,Dept Chem, Chiang Mai 50200, Thailand; [Japa, Mattawan; Nattestad, Andrew; Chen, Jun] Univ Wollongong, ARC Ctr Excellent Electromat Sci, Intelligent Polymer Res Inst, Australian Inst Innovat Mat, Wollongong, NSW 2522, Australia; [Tantraviwat, Doldet] Chiang Mai Univ, Fac Engn, Dept Elect Engn, Chiang Mai 50200, Thailand in 2021, Cited 52. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

N-doped TiO2, denoted as T_400, was prepared simply by the facile thermal hydrolysis of TiOSO4 using NH4OH as both a precipitating agent and a nitrogen source. Compared to TiO2 without nitrogen doping, T_400 provides superior photocatalytic activity toward the selective oxidation of benzyl alcohol and benzylamine under visible light irradiation, with > 85 % conversion and > 95 % selectivity to benzaldehyde and N-benzylidenebenzylamine products, respectively. The increased photoactivity of T_400 is ascribed to enhanced visible-light absorption and efficient photogenerated charge transfer and separation as supported by UV-vis DRS, photoelectrochemical and VB-XPS results. The catalyst can tolerate the presence of substituent groups in benzyl alcohol and benzelamine molecules as > 80 % conversion and > 95 % selectivity are still achieved, which expands the scope of substrates and catalyst utilization. Band energy level of N-doped TiO2 compared to that of undoped TiO2 is determined using Mott-Schottky and UV-vis DRS measurements. Possible mechanisms for the formation of benzaldehyde and N-benzylidenebenzylamine over N-doped TiO2 are proposed. This work presents a simple synthesis of N-doped TiO2, using a low-cost and easily handled inorganic titanium salt instead of air/moisture-sensitive alkoxide precursors and reveals its potential application toward photocatalytic synthesis of organic fine chemicals under visible light.

Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.. Application In Synthesis of (4-Methoxyphenyl)methanol

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts