Top Picks: new discover of 105-13-5

HPLC of Formula: C8H10O2. Welcome to talk about 105-13-5, If you have any questions, you can contact Garg, S; Unruh, DK; Krempner, C or send Email.

Authors Garg, S; Unruh, DK; Krempner, C in ROYAL SOC CHEMISTRY published article about PONNDORF-VERLEY REDUCTION; EPOXIDATION CATALYSTS; STRUCTURAL-CHARACTERIZATION; TRANSFER HYDROGENATION; OLEFIN POLYMERIZATION; QUINONE METHIDES; ACTIVE-SITES; BETA ZEOLITE; EFFICIENT; ETHERIFICATION in [Garg, Shipra; Unruh, Daniel K.; Krempner, Clemens] Texas Tech Univ, Dept Chem & Biochem, Mem Dr & Boston, Lubbock, TX 79409 USA in 2021, Cited 53. HPLC of Formula: C8H10O2. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

The polyhedral oligosilsesquioxane complexes, {[(isobutyl)(7)Si7O12]ZrOPri center dot(HOPri)}(2) (I), {[(cyclohexyl)(7)Si7O12]ZrOPri center dot(HOPri)}(2) (II), {[(isobutyl)(7)Si7O12]HfOPri center dot(HOPri)}(2) (III) and {[(cyclohexyl)(7)Si7O12]HfOPri center dot(HOPri)}(2) (IV), were synthesized in good yields from the reactions of M(OPri)(4) (M = Zr, Hf) with R-POSS(OH)(3) (R = isobutyl, cyclohexyl), resp. I-IV were characterized by H-1, C-13 and Si-29 NMR spectroscopy and their dimeric solid-state structures were confirmed by X-ray analysis. I-IV catalyze the reductive etherification of 2-hydroxy- and 4-hydroxy and 2-methoxy and 4-methoxybenzaldehyde and vanillin to their respective isopropyl ethers in isopropanol as a green solvent and reagent. I-IV are durable and robust homogeneous catalysts operating at temperatures of 100-160 degrees C for days without significant loss of catalytic activity. Likewise, I-IV selectively catalyze the conversion of 5-hydroxymethylfurfural (HMF) into 2,5-bis(isopropoxymethyl)furane (BPMF), a potentially high-performance fuel additive. Similar results were achieved by using a combination of M(OPri)(4) and ligand R-POSS(OH)(3) as a catalyst system demonstrating the potential of this in situ approach for applications in biomass transformations. A tentative reaction mechanism for the reductive etherification of aldehydes catalysed by I-IV is proposed.

HPLC of Formula: C8H10O2. Welcome to talk about 105-13-5, If you have any questions, you can contact Garg, S; Unruh, DK; Krempner, C or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

The Absolute Best Science Experiment for 105-13-5

Welcome to talk about 105-13-5, If you have any questions, you can contact Wu, SP; Zhang, H; Cao, QE; Zhao, QH; Fang, WH or send Email.. HPLC of Formula: C8H10O2

Authors Wu, SP; Zhang, H; Cao, QE; Zhao, QH; Fang, WH in ROYAL SOC CHEMISTRY published article about in [Wu, Shipeng; Zhang, Hao; Cao, Qiue; Zhao, Qihua; Fang, Wenhao] Yunnan Univ, Sch Chem Sci & Technol, Key Lab Med Chem Nat Resource, Minist Educ,Funct Mol Anal & Biotransformat Key L, 2 North Cuihu Rd, Kunming 650091, Yunnan, Peoples R China; [Cao, Qiue; Fang, Wenhao] Yunnan Univ, Natl Demonstrat Ctr Expt Chem & Chem Engn Educ, Kunming 650091, Yunnan, Peoples R China in 2021, Cited 46. HPLC of Formula: C8H10O2. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Direct oxidative coupling of alcohols with amines using a non-precious metal oxide catalyst under mild conditions is highly desirable for imine synthesis. In this work, a mesoporous Mn1ZrxOy solid solution catalyst prepared by a co-precipitation method showed excellent catalytic performance in imine synthesis from primary alcohols and amines without base additives in an air atmosphere. XRD, N-2 physisorption, H-2-TPR, O-2-TPD, EPR and XPS were comprehensively used to unravel its structural, redox and amphoteric properties that closely depended on the interaction between MnOy and ZrO2 with a variable Zr ratio. The Mn1Zr0.5Oy catalyst presented the highest fractions of Mn3+ ions and reactive oxygen species on the surface, and the highest concentrations of acidic-basic sites, which were disclosed to play important roles in activating alcohols and molecular O-2 in the rate-determining step. In the model reaction of oxidative coupling of benzyl alcohol with aniline, such enhanced features of the Mn1Zr0.5Oy catalyst can promote the intrinsic catalytic activity (iTOF of 1.87 h(-1)) and boost benzylideneaniline formation (5.56 mmol g(cat).(-1) h(-1)) based on a >99% yield at 80 degrees C respectively at a fast response. It can also work effectively at a room temperature of 30 degrees C, as well as for the gram-grade synthesis. This is one of the best results among all the MnOy-based catalysts in the literature. Moreover, this catalyst showed good stability and a wide substrate scope with good to excellent yields of imines.

Welcome to talk about 105-13-5, If you have any questions, you can contact Wu, SP; Zhang, H; Cao, QE; Zhao, QH; Fang, WH or send Email.. HPLC of Formula: C8H10O2

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

The Shocking Revelation of (4-Methoxyphenyl)methanol

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Behera, PK; Choudhury, P; Sahu, SK; Sahu, RR; Harvat, AN; McNulty, C; Stitgen, A; Scanlon, J; Kar, M; Rout, L or concate me.. Computed Properties of C8H10O2

Computed Properties of C8H10O2. Behera, PK; Choudhury, P; Sahu, SK; Sahu, RR; Harvat, AN; McNulty, C; Stitgen, A; Scanlon, J; Kar, M; Rout, L in [Behera, Pradyota Kumar; Choudhury, Prabhupada; Sahu, Santosh Kumar; Sahu, Rashmi Ranjan; Rout, Laxmidhar] Berhampur Univ, Dept Chem, Berhampur 760007, Orissa, India; [Rout, Laxmidhar] IISER, Dept Chem, Berhampur 760010, Odisha, India; [Harvat, Alisha N.; McNulty, Caitlin; Stitgen, Abigail; Scanlon, Joseph] Ripon Coll, Ripon, WI 54971 USA; [Kar, Manoranjan] IIT Patna, Patna 801106, Bihar, India published Oxygen Bridged Bimetallic CuMoO4 Nanocatalyst for Benzylic Alcohol Oxidation; Mechanism and DFT Study in 2021, Cited 113. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5.

Though concept of oxygen bridged bimetallic catalyst for organic reaction is not well understood. Herein, we have tried to explain the concept by experimental as well as its support by full DFT study. We report here a competent protocol for dehydrogenative oxidation of benzylic alcohol using an oxygen bridged bimetallic CuMoO4 nano catalyst. Careful demonstration reveals that oxidation is not effective either with mono-metallic Cu (II) or Mo(VI); instead combination of both the metals through the oxygen bridge [Cu-O-Mo] unexpectedly and interestingly catalyzed the reaction efficiently. The new concept is strongly supported by computational DFT study. DFT study reveals dehydrogenative oxidation is preferred at copper centre over molybdenum and aromatic benzyl alcohols are greatly stabilised. Interaction barrier energy of monometallic CuO and MoO3 catalyst is much higher than bimetallic CuMoO4. Hydrogen transfer has larger barrier heights for CuO (31.5 kcal/mol) and MoO3 (40.3 kcal/mol) than bimetallic CuMoO4.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Behera, PK; Choudhury, P; Sahu, SK; Sahu, RR; Harvat, AN; McNulty, C; Stitgen, A; Scanlon, J; Kar, M; Rout, L or concate me.. Computed Properties of C8H10O2

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Downstream Synthetic Route Of C8H10O2

Category: alcohols-buliding-blocks. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

In 2021 TETRAHEDRON published article about ASYMMETRIC TRANSFER HYDROGENATION; ENANTIOSELECTIVE TRANSFER HYDROGENATION; MEDIATED 2+2+1 CYCLOADDITIONS; TRIMETHYLAMINE N-OXIDE; METAL-DIENE COMPLEXES; REDUCTIVE AMINATION; SELECTIVE HYDROGENATION; HIGHLY EFFICIENT; ORGANIC-SYNTHESIS; CARBON-MONOXIDE in [Coufourier, Sebastien; Ndiaye, Daouda; Gaillard, Quentin Gaignard; Bettoni, Leo; Joly, Nicolas; Mbaye, Mbaye Diagne; Gaillard, Sylvain; Renaud, Jean-Luc] Normandie Univ, CNRS, UNICAEN, LCMT,ENSICAEN, 6 Blvd Marechal Juin, F-14050 Caen, France; [Ndiaye, Daouda; Mbaye, Mbaye Diagne] Univ Assane Seck Ziguinchor, BP 523, Ziguinchor, Senegal; [Joly, Nicolas; Poater, Albert] Univ Girona, Inst Quim Computac & Catalisi IQCC, Dept Quim, C M Aurelia Capmany 69, Girona 17003, Catalonia, Spain in 2021, Cited 109. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5. Category: alcohols-buliding-blocks

A Diaminocyclopentadienone iron tricarbonyl complex has been applied in chemoselective hydrogen transfer reductions. This bifunctional iron complex demonstrated a broad applicability in mild conditions in various reactions, such as reduction of aldehydes over ketones, reductive alkylation of various functionalized amines with functionalized aldehydes and reduction of alpha,beta-unsaturated ketones into the corresponding saturated ketones. A broad range of functionalized substrates has been isolated in excellent yields with this practical procedure. (C) 2021 Elsevier Ltd. All rights reserved.

Category: alcohols-buliding-blocks. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Chemistry Milestones Of (4-Methoxyphenyl)methanol

HPLC of Formula: C8H10O2. Welcome to talk about 105-13-5, If you have any questions, you can contact Reddy, PS; Reddy, NG; Serjun, VZ; Mohanty, B; Das, SK; Reddy, KR; Rao, BH or send Email.

Authors Reddy, PS; Reddy, NG; Serjun, VZ; Mohanty, B; Das, SK; Reddy, KR; Rao, BH in SPRINGER published article about PARTICLE-SHAPE; BAYER-PROCESS; PHYSICAL-PROPERTIES; CARBON-DIOXIDE; WASTE; NEUTRALIZATION; ADSORBENT; LIME; STABILIZATION; STRENGTH in [Reddy, Peddireddy Sreekanth; Mohanty, Bijayananda] NIT Mizoram, Dept Civil Engn, Aizawl 796012, Mizoram, India; [Reddy, Narala Gangadhara; Rao, Bendadi Hanumantha] ITT Bhubaneswar, Sch Infrastruct, Khorda 752050, Odisha, India; [Reddy, Narala Gangadhara] Shantou Univ, Dept Civil & Environm Engn, Shantou 515063, Guangdong, Peoples R China; [Serjun, Vesna Zalar] Slovenian Natl Bldg & Civil Engn Inst Slovenia, Dept Mat, Ljubljana 1000, Slovenia; [Das, Sarat Kumar] IIT ISM Dhanbad, Dept Civil Engn, Dhanbad 826004, Jharkhand, India; [Reddy, Krishna R.] Univ Illinois, Dept Civil & Mat Engn, Chicago, IL USA in 2021, Cited 205. HPLC of Formula: C8H10O2. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

In order to conserve natural resources and prevent waste generation, effective utilization of industrial wastes and/or by-products for beneficial engineering applications becomes inevitable. In order to accomplish this, extensive research studies, exploring properties and new applications of waste materials in a sustainable and environmentally friendly manner, have been initiated worldwide. Red mud (RM, also known as bauxite residue) is one of the wastes generated by the aluminium industry and its disposal and utilization have been traditionally hindered due to the extreme alkalinity (pH about 10.5-13.5). To date, no comprehensive review on various properties of RM of different origin and associated challenges in using it as a beneficial engineering material has been performed. The objective of this study is first to critically appraise the current understanding of properties of RM through a comprehensive literature review and detailed laboratory investigations conducted on Indian RM by the authors, to assess and identify the potential engineering applications, and to finally discuss associated challenges in using it in practical applications. Physical, chemical, mineralogical and geotechnical properties of RMs of different origin and production processes are reviewed. Mechanisms behind the pozzolanic reaction of RM under different chemical and mineralogical compositional conditions are discussed. Environmental concerns associated with the use of RM are also raised. Studies relevant to leachability characteristics reveal that most of the measured chemical concentrations are within the permissible regulatory limits. Overall, the review shows that RM disposal and reuse is complicated by its extreme alkalinity, which is also noticed to be influencing multiple engineering properties. But with selected pH amendments, the treated RM is found to have significant potential to be used as an effective and sustainable geomaterial. The assessment is majorly based on the characteristics of Indian RMs; hence the adaptation of the findings to other RMs should be assessed on a case-by-case basis. Moreover, field studies demonstrating the performance of RM in various engineering applications are warranted. [GRAPHICS] .

HPLC of Formula: C8H10O2. Welcome to talk about 105-13-5, If you have any questions, you can contact Reddy, PS; Reddy, NG; Serjun, VZ; Mohanty, B; Das, SK; Reddy, KR; Rao, BH or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

What about chemistry interests you the most 105-13-5

Product Details of 105-13-5. Welcome to talk about 105-13-5, If you have any questions, you can contact Mears, PR; Thomas, EJ or send Email.

An article Synthesis of the C1-C16 fragment of bryostatin for incorporation into 20,20-fluorinated analogues WOS:000599822100009 published article about ANTINEOPLASTIC AGENTS; DERIVATIVES; MACROLIDE; LEADS in [Mears, Paul R.; Thomas, Eric J.] Univ Manchester, Dept Chem, Manchester M13 9PL, Lancs, England in 2021, Cited 44. Product Details of 105-13-5. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

The stereoselective synthesis of a carboxylic acid ester corresponding to the C1 -C16 fragment of bryostatin, with 4-methoxybenzyl (PMB) protection for the 7-hydroxyl group, is reported. The key steps included a Horner-Wadsworth-Emmons reaction between (5R)-3-[ (E)-2-tri- isop ropyls ilyloxy ethylidene]-6-(4-methoxybenzyloxy)-5-triethylsilyloxyhexanal and dimethyl (4,5,6R,85)-10-hydroxy-6,8-di-O-isopropylidene 4 (4 methoxybenzyloxy)-3,3-dimethyl-2-oxodecan-1-yl phosphonate, that gave the corresponding (E)-alkene, followed by selective cleavage of the triethylsilyl ether and cyclisation to give the required 2,6-cis-disubstituted 4-[(Z)-tri-isopropylsilyloxyethylide]tetrahydropyran. Oxidation of the primary alcohol gave the corresponding carboxylic acid that was converted into the required allyl ester. (C) 2020 Elsevier Ltd. All rights reserved.

Product Details of 105-13-5. Welcome to talk about 105-13-5, If you have any questions, you can contact Mears, PR; Thomas, EJ or send Email.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Simple exploration of 105-13-5

SDS of cas: 105-13-5. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Recently I am researching about CARBOXYLIC-ACID SALTS; SECONDARY ALCOHOLS; DEHYDROGENATIVE OXIDATION; DIRECT FUNCTIONALIZATION; CROSS-COUPLINGS; COMPLEX BEARING; N-ALKYLATION; PPM LEVELS; WATER; COBALT, Saw an article supported by the SERB DSTDepartment of Science & Technology (India)Science Engineering Research Board (SERB), India; CSIR, IndiaCouncil of Scientific & Industrial Research (CSIR) – India [CRG 2019/000013, 01(2982)/19/EMR-II]; DST Inspire fellowship; UGC, IndiaUniversity Grants Commission, India; Indian Institute of Technology Delhi; DST-FISTDepartment of Science & Technology (India); IITD. Published in WILEY-V C H VERLAG GMBH in WEINHEIM ,Authors: Verma, A; Hazra, S; Dolui, P; Elias, AJ. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol. SDS of cas: 105-13-5

Herein, we report a simple, efficient, and sustainable method for the synthesis of alpha-alkylated ketones and quinolines using a hydrogen-borrowing strategy, which has emerged as a greener alternative in organic transformation reactions. Synthesis of a range of alpha-alkylated ketones and quinoline derivatives was achieved by using the water-soluble [Ru(8-AQ)Cl(p-cym.)]Cl-+(-) [Ru]-1 (AQ=aminoquinoline) catalyst with water as the reaction medium. By adopting this strategy, we have synthesized alpha-alkylated ketones and quinolines using ketones or secondary alcohols as starting materials and the primary alcohol as a green and naturally abundant alkylating agent.

SDS of cas: 105-13-5. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Something interesting about (4-Methoxyphenyl)methanol

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Luo, NH; Zhong, YH; Wen, HL; Shui, HL; Luo, RS or concate me.. Product Details of 105-13-5

Product Details of 105-13-5. Authors Luo, NH; Zhong, YH; Wen, HL; Shui, HL; Luo, RS in WILEY-V C H VERLAG GMBH published article about in [Luo, Nianhua; Zhong, Yuhong; Wen, Huiling; Shui, Hongling; Luo, Renshi] Gannan Med Univ, Sch Pharmaceut Sci, Ganzhou 341000, Jiangxi, Peoples R China in 2021, Cited 94. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

Ketones are of great importance in synthesis, biology, and pharmaceuticals. This paper reports an iridium complexes-catalyzed cross-coupling of alcohols via hydrogen borrowing, affording a series of alpha-alkylated ketones in high yield (86 %-95 %) and chemoselectivities (>99 : 1). This methodology has the advantages of low catalyst loading (0.1 mol%) and environmentally benign water as the solvent. Studies have shown the amount of base has a great impact on chemoselectivities. Meanwhile, deuteration experiments show water plays an important role in accelerating the reduction of the unsaturated ketones intermediates. Remarkably, a gram-scale experiment demonstrates this methodology of iridium-catalyzed cross-coupling of alcohols has potential application in the practical synthesis of alpha-alkylated ketones.

About (4-Methoxyphenyl)methanol, If you have any questions, you can contact Luo, NH; Zhong, YH; Wen, HL; Shui, HL; Luo, RS or concate me.. Product Details of 105-13-5

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Machine Learning in Chemistry about 105-13-5

Welcome to talk about 105-13-5, If you have any questions, you can contact Senthilkumar, S; Zhong, W; Natarajan, M; Lu, CX; Xu, BY; Liu, XM or send Email.. Computed Properties of C8H10O2

Authors Senthilkumar, S; Zhong, W; Natarajan, M; Lu, CX; Xu, BY; Liu, XM in ROYAL SOC CHEMISTRY published article about SELECTIVE OXIDATION; HIGHLY EFFICIENT; COPPER NANOPARTICLES; GALACTOSE-OXIDASE; GRAPHENE OXIDE; COMPLEXES; LIGAND; CONVERSION; CHEMISTRY; SYSTEM in [Senthilkumar, Samuthirarajan; Zhong, Wei; Natarajan, Mookan; Lu, Chunxin; Liu, Xiaoming] Jiaxing Univ, Coll Biol Chem Sci & Engn, Jiaxing, Zhejiang, Peoples R China; [Xu, Binyu] Nanchang Univ, Sch Chem, Nanchang, Jiangxi, Peoples R China in 2021, Cited 51. Computed Properties of C8H10O2. The Name is (4-Methoxyphenyl)methanol. Through research, I have a further understanding and discovery of 105-13-5

An efficient and green protocol for aerobic oxidation of benzylic alcohols in ethanol using Cu-I-Y zeolite catalysts assisted by TEMPO (TEMPO = 2,2,6,6-tetramethyl-1-piperidine-N-oxyl) as the radical co-catalyst in the presence of atmospheric air under mild conditions is reported. The Cu-I-Y zeolite prepared via ion exchange between CuCl and HY zeolite was fully characterized by a variety of spectroscopic techniques including XRD, XPS, SEM, EDX and HRTEM. The incorporation of Cu(i) into the 3D-framework of the zeolite rendered the catalyst with good durability. The results of repetitive runs revealed that in the first three runs, there was hardly a decline in activity and a more substantial decrease in yield was observed afterwards, while the selectivity remained almost unchanged. The loss in activity was attributed to both the formation of CuO and the bleaching of copper into the liquid phase during the catalysis, of which the formation of CuO was believed to be the major contributor since the bleaching loss for each run was negligible (<2%). In this catalytic system, except TEMPO, no other additives were needed, either a base or a ligand, which was essential in some reported catalytic systems for the oxidation of alcohols. The aerobic oxidation proceeded under mild conditions (60 degrees C, and 18 hours) to quantitatively and selectively convert a wide range of benzylic alcohols to corresponding aldehydes, which shows great potential in developing green and environmentally benign catalysts for aerobic oxidation of alcohols. The system demonstrated excellent tolerance against electron-withdrawing groups on the phenyl ring of the alcohols and showed sensitivity to steric hindrance of the substrates, which is due to the confinement of the pores of the zeolite in which the oxidation occurred. Based on the mechanism reported in the literature for homogenous oxidation, a mechanism was analogously proposed for the aerobic oxidation of benzylic alcohols catalysed by this Cu(i)-containing zeolite catalyst. Welcome to talk about 105-13-5, If you have any questions, you can contact Senthilkumar, S; Zhong, W; Natarajan, M; Lu, CX; Xu, BY; Liu, XM or send Email.. Computed Properties of C8H10O2

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts

Discover the magic of the C8H10O2

Application In Synthesis of (4-Methoxyphenyl)methanol. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Recently I am researching about GROWTH-FACTOR-I; GLYCEMIC LOAD; SCREENING TRIAL; MEAT MUTAGENS; HEME IRON; PROSTATE; INDEX; INSULIN; VALUES; FIBER, Saw an article supported by the National Institutes of Health (NIH), Genes, Environment and Health Initiative (GEI)United States Department of Health & Human ServicesNational Institutes of Health (NIH) – USANIH National Institute of Neurological Disorders & Stroke (NINDS) [Z01 CP 010200, NIH U01 HG004446, NIH GEI U01 HG 004438]; University Postgraduate Fellowship by the HKU Foundation. Application In Synthesis of (4-Methoxyphenyl)methanol. Published in ELSEVIER IRELAND LTD in CLARE ,Authors: Tao, J; Jatoi, A; Crawford, J; Lam, WWT; Ho, JC; Wang, XF; Pang, H. The CAS is 105-13-5. Through research, I have a further understanding and discovery of (4-Methoxyphenyl)methanol

Objectives: Inconsistent findings have been reported on the link between dietary carbohydrates and lung cancer. This study aims to comprehensively evaluate the role of dietary carbohydrates on lung cancer risk. Materials and methods: The prospective study is based on the PLCO trial, which recruited 113,096 eligible participants across the United States. Participants had to have completed baseline and diet history questionnaires. The incidence of lung cancer was acquired through self-report and medical record follow-up. A multivariable logistic model adjusted for confounders was used to estimate odds ratios (ORs) and 95 % confidence intervals (CIs) of dietary carbohydrates, fiber, whole grains, glycemic index (GI) and glycemic load (GL) for lung cancer. Similar methods were applied in analyzing the carbohydrates and fiber from different food sources. Multinomial logistic models were used for sensitivity analysis with lung cancer subtypes as outcomes. Results: Dietary carbohydrates and GL were inversely associated with lung cancer incidence in the PLCO population. Among various carbohydrates, 30-g daily consumption of dietary fiber was related to a lower risk of lung cancer (fourth vs first quartile OR: 0.62, 95 % CI: 0.54-0.72) compared with 8.8-g. Furthermore, consuming whole grains 2.3 servings per day as opposed to 0.3 servings per day was associated with a lower risk of lung cancer (OR: 0.73, 95 % CI: 0.64-0.83). A higher risk of lung cancer was seen for the consumption of high-GI food (OR: 1.19, 95 % CI: 1.05?1.35) and refined carbohydrates from soft drinks (OR: 1.23, 95 % CI: 1.04?1.46). Conclusion: Carbohydrates and fiber from fruits, vegetables and whole grains are associated with lower lung cancer risk. Refined carbohydrates from processed food, such as soft drinks, appear to increase risk.

Application In Synthesis of (4-Methoxyphenyl)methanol. Bye, fridends, I hope you can learn more about C8H10O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Alcohol – Wikipedia,
,Alcohols – Chemistry LibreTexts